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Quantale semantics

David N. Yetter (1990)
Quantales and (Noncommutative) Linear Logic,
The Journal of Symbolic Logic, 55(1), pp. 41–64.

THEOREM. The (Girard) quantale semantics for
commutative LL is sound and complete with respect to
the commutative linear sequent calculus:

⊢ A1, A2, ..., An iff I ¬ |A1OA2O...OAn|.
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Girard quantales

A Girard quantale is a complete lattice (Q,¬, 1, 0) with:
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A Girard quantale is a complete lattice (Q,¬, 1, 0) with:

tensor: ⊗ : Q×Q → Q – associative, commutative,

a⊗
∨
S =

∨
s∈S(a⊗ s),

On Domain Theory over Girard Quantales – p. 3/12



Girard quantales

A Girard quantale is a complete lattice (Q,¬, 1, 0) with:

tensor: ⊗ : Q×Q → Q – associative, commutative,

a⊗
∨
S =

∨
s∈S(a⊗ s),

Def.: a⊗ x ¬ b ⇐⇒ a ¬ b⊸ x,
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Girard quantales

A Girard quantale is a complete lattice (Q,¬, 1, 0) with:

tensor: ⊗ : Q×Q → Q – associative, commutative,

a⊗
∨
S =

∨
s∈S(a⊗ s),

Def.: a⊗ x ¬ b ⇐⇒ a ¬ b⊸ x,

a = ¬¬a, where ¬a := a⊸ ⊥,
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Girard quantales

A Girard quantale is a complete lattice (Q,¬, 1, 0) with:

tensor: ⊗ : Q×Q → Q – associative, commutative,

a⊗
∨
S =

∨
s∈S(a⊗ s),

Def.: a⊗ x ¬ b ⇐⇒ a ¬ b⊸ x,

a = ¬¬a, where ¬a := a⊸ ⊥,

unit: I := ¬⊥,
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Girard quantales

A Girard quantale is a complete lattice (Q,¬, 1, 0) with:

tensor: ⊗ : Q×Q → Q – associative, commutative,

a⊗
∨
S =

∨
s∈S(a⊗ s),

Def.: a⊗ x ¬ b ⇐⇒ a ¬ b⊸ x,

a = ¬¬a, where ¬a := a⊸ ⊥,

unit: I := ¬⊥,

a = I⊗ a = a⊗ I,
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Girard quantales

A Girard quantale is a complete lattice (Q,¬, 1, 0) with:

tensor: ⊗ : Q×Q → Q – associative, commutative,

a⊗
∨
S =

∨
s∈S(a⊗ s),

Def.: a⊗ x ¬ b ⇐⇒ a ¬ b⊸ x,

a = ¬¬a, where ¬a := a⊸ ⊥,

unit: I := ¬⊥,

a = I⊗ a = a⊗ I,

par: aOb := ¬(¬a⊗ ¬b),
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Girard quantales

A Girard quantale is a complete lattice (Q,¬, 1, 0) with:

tensor: ⊗ : Q×Q → Q – associative, commutative,

a⊗
∨
S =

∨
s∈S(a⊗ s),

Def.: a⊗ x ¬ b ⇐⇒ a ¬ b⊸ x,

a = ¬¬a, where ¬a := a⊸ ⊥,

unit: I := ¬⊥,

a = I⊗ a = a⊗ I,

par: aOb := ¬(¬a⊗ ¬b),

Informally: ∧,∨,⊗,O,⊸,
∨
,
∧
, 0, 1, I,⊥,¬, !, ?
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Girard quantales

A Girard quantale is a complete lattice (Q,¬, 1, 0) with:

tensor: ⊗ : Q×Q → Q – associative, commutative,

a⊗
∨
S =

∨
s∈S(a⊗ s),

Def.: a⊗ x ¬ b ⇐⇒ a ¬ b⊸ x,

a = ¬¬a, where ¬a := a⊸ ⊥,

unit: I := ¬⊥,

a = I⊗ a = a⊗ I,

par: aOb := ¬(¬a⊗ ¬b),

Informally: ∧,∨,⊗,O,⊸,
∨
,
∧
, 0, 1, I,⊥,¬, !, ?

Recall: ⊢ A1, A2, ..., An iff I ¬ |A1OA2O...OAn|
iff I ¬ |A1|O|A2|O...O|An|
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Examples

Every complete Boolean algebra is a Girard quantale
with ⊗ = ∧, e.g.:

bc

bc

bc

bc

I

⊥
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Every complete Boolean algebra is a Girard quantale
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bc

bc

bc

bc

I

⊥

The two-element lattice 2 = {I,⊥} with ⊗ = ∧
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Examples

Every complete Boolean algebra is a Girard quantale
with ⊗ = ∧, e.g.:

bc

bc

bc

bc

I

⊥

The two-element lattice 2 = {I,⊥} with ⊗ = ∧

The unit interval ([0, 1],) with I = 0, ⊥ = 1, ⊗ = +
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Coding my favorite theory

1 I assume that domain theory is my favorite theory
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Coding my favorite theory

1 I assume that domain theory is my favorite theory

2 I regard basic notions of domain theory as predicates
valued in 2, e.g. I = X(x, y) will mean that in a poset
(X,⊑) we have x ⊑ y.
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Coding my favorite theory

1 I assume that domain theory is my favorite theory

2 I regard basic notions of domain theory as predicates
valued in 2, e.g. I = X(x, y) will mean that in a poset
(X,⊑) we have x ⊑ y.

3 I generalize from 2 to a Girard quantale Q

4 With great surprise I realize that the usual domain-
theoretic definitions make good sense after the change;
moreover, usual proofs of domain-theoretic theorems
generalize as well.
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Coding my favorite theory

1 I assume that domain theory is my favorite theory

2 I regard basic notions of domain theory as predicates
valued in 2, e.g. I = X(x, y) will mean that in a poset
(X,⊑) we have x ⊑ y.

3 I generalize from 2 to a Girard quantale Q

4 With great surprise I realize that the usual domain-
theoretic definitions make good sense after the change;
moreover, usual proofs of domain-theoretic theorems
generalize as well.

5 I don’t understand why this happens!
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Coding axioms of order theory

For a poset (X,⊑) I define X(x, y) to be the
interpretation of a predicate ‘x ⊑ y’ in a Girard quantale
Q. Then:
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Coding axioms of order theory

For a poset (X,⊑) I define X(x, y) to be the
interpretation of a predicate ‘x ⊑ y’ in a Girard quantale
Q. Then:

I ¬ X(x, x)
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Coding axioms of order theory

For a poset (X,⊑) I define X(x, y) to be the
interpretation of a predicate ‘x ⊑ y’ in a Girard quantale
Q. Then:

I ¬ X(x, x)

I ¬ (X(x, y)⊗X(y, z))⊸ X(x, z)
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Coding axioms of order theory

For a poset (X,⊑) I define X(x, y) to be the
interpretation of a predicate ‘x ⊑ y’ in a Girard quantale
Q. Then:

I ¬ X(x, x)

I ¬ (X(x, y)⊗X(y, z))⊸ X(x, z)

I ¬ X(x, y) and I ¬ X(y, x) imply x = y.
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Coding axioms of order theory

For a poset (X,⊑) I define X(x, y) to be the
interpretation of a predicate ‘x ⊑ y’ in a Girard quantale
Q. Then:

I ¬ X(x, x)

I ¬ (X(x, y)⊗X(y, z))⊸ X(x, z)

I ¬ X(x, y) and I ¬ X(y, x) imply x = y.

When Q = 2, the above axioms represent poset axioms
exactly.
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Coding axioms of order theory

For a poset (X,⊑) I define X(x, y) to be the
interpretation of a predicate ‘x ⊑ y’ in a Girard quantale
Q. Then:

I ¬ X(x, x)

I ¬ (X(x, y)⊗X(y, z))⊸ X(x, z)

I ¬ X(x, y) and I ¬ X(y, x) imply x = y.

When Q = 2, the above axioms represent poset axioms
exactly.

However, when Q = [0, 1], the above axioms become
metric axioms!
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Coding domain theory – example 1

For a subset A ⊆ X of a poset (X,⊑), A is lower if

∀x∀y [(y ∈ A ∧ x ⊑ y) ⇒ x ∈ A]
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Coding domain theory – example 1

For a subset A ⊆ X of a poset (X,⊑), A is lower if

∀x∀y [(y ∈ A ∧ x ⊑ y) ⇒ x ∈ A]

I define A(x) to be the interpretation of a predicate
‘x ∈ A’ in Q.
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Coding domain theory – example 1

For a subset A ⊆ X of a poset (X,⊑), A is lower if

∀x∀y [(y ∈ A ∧ x ⊑ y) ⇒ x ∈ A]

I define A(x) to be the interpretation of a predicate
‘x ∈ A’ in Q.

Def.: A is a lower if

I ¬
∧

x

∧

y

[(A(y)⊗X(x, y))⊸ A(x)].
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Coding domain theory – example 2

For a subset A ⊆ X of a poset (X,⊑), A is Scott-open if

∀φ ∈ IX [Sφ ∈ A ⇐⇒ (∃x ∈ φ (x ∈ A))].
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Coding domain theory – example 2

For a subset A ⊆ X of a poset (X,⊑), A is Scott-open if

∀φ ∈ IX [Sφ ∈ A ⇐⇒ (∃x ∈ φ (x ∈ A))].

Def.: A is Scott-open if for any φ ∈ IX

A(Sφ) =
∨

x

(φ(x)⊗ A(x)).

On Domain Theory over Girard Quantales – p. 8/12



Coding domain theory – example 2

For a subset A ⊆ X of a poset (X,⊑), A is Scott-open if

∀φ ∈ IX [Sφ ∈ A ⇐⇒ (∃x ∈ φ (x ∈ A))].

Def.: A is Scott-open if for any φ ∈ IX

A(Sφ) =
∨

x

(φ(x)⊗ A(x)).

Defining H(x) := ¬A(x) and negating both sides:

H(Sφ) =
∧

x

(φ(x)⊸ H(x)).
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Coding domain theory – example 2

For a subset A ⊆ X of a poset (X,⊑), A is Scott-open if

∀φ ∈ IX [Sφ ∈ A ⇐⇒ (∃x ∈ φ (x ∈ A))].

Def.: A is Scott-open if for any φ ∈ IX

A(Sφ) =
∨

x

(φ(x)⊗ A(x)).

Defining H(x) := ¬A(x) and negating both sides:

H(Sφ) =
∧

x

(φ(x)⊸ H(x)).

In 2 this means that a subset H has the property that
Sφ ∈ H iff φ ⊆ H, which is exactly the definition of a
Scott-closed subset H!
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...and in this way I can define much more: continuous
maps, way-below relation, closure operators, compact
subsets, abstract bases, powerdomains, etc. ...and
prove all of the usual basic theorems of domain theory
in more general setup.

WHY ?!
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What I think is relevant

Inside every Girard quantale Q lives a complete
Boolean algebra:

B = {?!x | x ∈ Q}.

x ∧B y :=?!(x ∧ y)

x ∨B y := x ∨ y

x⇒B y :=!x⊸ y

0B = ⊥

1B =?I∧
B S =?!

∧
S

∨
B S =?

∨
{!x | x ∈ S}
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What I think is relevant

Inside every Girard quantale Q lives a complete
Boolean algebra:

B = {?!x | x ∈ Q}.

x ∧B y :=?!(x ∧ y)

x ∨B y := x ∨ y

x⇒B y :=!x⊸ y

0B = ⊥

1B =?I∧
B S =?!

∧
S

∨
B S =?

∨
{!x | x ∈ S}

For ! = ext, where ext(x) := I if x = I, and ext(x) = ⊥
otherwise, we get B = {⊥, I} = 2.
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What I think is relevant

For a fixed first-order linear language L, we have a
translation (·)c:
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of B, e.g.:
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What I think is relevant

For a fixed first-order linear language L, we have a
translation (·)c:

Ac =?!A if A is atomic,

...then proceed by structural induction on the definition
of B, e.g.:

(A⇒ B)c =!A⊸ B.
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What I think is relevant

For a fixed first-order linear language L, we have a
translation (·)c:

Ac =?!A if A is atomic,

...then proceed by structural induction on the definition
of B, e.g.:

(A⇒ B)c =!A⊸ B.

THEOREM.

A1, ..., An ⊢CL A provable iff !A
c
1
, ..., !Acn ⊢LL A

c provable
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What I think is relevant

For a fixed first-order linear language L, we have a
translation (·)c:

Ac =?!A if A is atomic,

...then proceed by structural induction on the definition
of B, e.g.:

(A⇒ B)c =!A⊸ B.

THEOREM.

A1, ..., An ⊢CL A provable iff !A
c
1
, ..., !Acn ⊢LL A

c provable

CAN I HOPE FOR a similar theorem concerning a
translation of domain theory from classical to linear
logic?
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The end
Fin

Koniec
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