On some combinatorial problems in lambda calculus

Katarzyna Grygiel

Computational Logic and Applications Kraków 2008

◆□▶ ◆舂▶ ◆注▶ ◆注▶ 三注

Motivation 0	Introduction 000000	First attempts and first bounds 00000000	Analytic approach 0000	Some classes of λ terms 000000
Outli	ne			

Motivation

Motivation 0	Introduction 000000	First attempts and first bounds 00000000	Analytic approach 0000	Some classes of λ terms
Outli	ne			

- Motivation
- Lambda trees, lambda terms

Motivation	Introduction	First attempts and first bounds	Analytic approach	Some classes of λ terms 000000
0	000000	00000000	0000	
Outli	ne			

- Motivation
- Lambda trees, lambda terms
- First attempts: hits and misses

Motivation	Introduction	First attempts and first bounds	Analytic approach	Some classes of λ terms 000000
0	000000	00000000	0000	
Outl	ine			

- Motivation
- Lambda trees, lambda terms
- First attempts: hits and misses
- Some bounds

Motivation 0	Introduction 000000	First attempts and first bounds 00000000	Analytic approach 0000	Some classes of λ terms
Outli	ne			

- Motivation
- Lambda trees, lambda terms
- First attempts: hits and misses
- Some bounds
- Analytic approach

Moti 0		Introduction 000000	First attempts and first bounds 00000000	Analytic approach 0000	Some classes of λ terms 000000
С	utlir	ıe			

- Motivation
- Lambda trees, lambda terms
- First attempts: hits and misses
- Some bounds
- Analytic approach
- Some other questions

First attempts and first bounds

Analytic approach

Some classes of λ terms 000000

Preliminary problem

Question

How many programs have the halting property?

< ∃ >

Preliminary problem

Question

How many programs have the halting property?

In terms of lambda calculus: compute the following limit

$$\lim_{n\to\infty}\frac{SNTerms(n)}{Terms(n)} = ?$$

where SNTerms(n) denotes the number of closed lambda terms of length *n* that strongly normalize and Terms(n) is the number of all closed lambda terms of length *n*.

First attempts and first bounds

Analytic approach

Some classes of λ terms 000000

Catalan numbers

Binary tree

A binary tree is a rooted tree in which each vertex has up to two children and each child node is called left or right.

• • = • • =

Some classes of λ terms

Catalan numbers

00000

Binary tree

A binary tree is a rooted tree in which each vertex has up to two children and each child node is called left or right.

Catalan numbers

C(n) — the number of binary trees with exactly n leaves First values: 1, 1, 2, 5, 14, 42, ... Generating function: $c(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$ Exact formula: $C(n) = \frac{1}{n+1} {\binom{2n}{n}}.$

Some classes of λ terms 000000

Motzkin numbers

Unary-binary tree

A unary-binary tree is a rooted tree in which each vertex has up to two children.

• = • •

Some classes of λ terms 000000

Motzkin numbers

Unary-binary tree

A unary-binary tree is a rooted tree in which each vertex has up to two children.

Motzkin numbers

M(n) — the number of u-b trees with exactly n nodes First values: 1, 1, 2, 4, 9, 21, 51, 127, 323, ... Generating function: $m(x) = \frac{1 - x - \sqrt{(1 - 3x)(1 + x)}}{2x}$ Asymptotics: $M(n) \sim 3^n \sqrt{\frac{3}{4\pi n^3}}$

Some classes of λ terms 000000

Specified Motzkin numbers

Specified Motzkin numbers

M(n, k) — the number of rooted u-b trees with n vertices and exactly k leaves

Generating function:
$$m(x,y) = \frac{1-x-\sqrt{(1-x)^2-4x^2y}}{2x}$$

Exact formula: $M(n,k) = C(k-1)\binom{n-1}{n-2k+1}$

→ < Ξ → <</p>

Motivation	Introduction	First attempts and first bounds	Analytic approach	Some classes of λ :
	000000			

Lambda trees

Lambda tree

A lambda tree is a unary-binary tree in which each leaf can be labelled in as many ways as many vertices with exactly one child occur on the path from the leaf to the root of the tree.

Some classes of λ terms 000000

Lambda trees

Lambda tree

A lambda tree is a unary-binary tree in which each leaf can be labelled in as many ways as many vertices with exactly one child occur on the path from the leaf to the root of the tree.

Problem

How many lambda trees of a given size are there?

What are lambda trees actually?

Since we do not bother about the names of variables, we count lambda terms up to α -conversion. We count the length of a lambda term as follows:

$$ert x ert = 1$$

 $ert \lambda x.M ert = 1 + ert M ert$
 $ert M N ert = 1 + ert M ert + ert N$

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

What are lambda trees actually?

Since we do not bother about the names of variables, we count lambda terms up to α -conversion. We count the length of a lambda term as follows:

$$egin{aligned} |x| &= 1 \ |\lambda x.M| &= 1 + |M| \ |MN| &= 1 + |M| + |N| \end{aligned}$$

Correspondence

There is a one-to-one correspondence between closed lambda terms of length n and lambda trees of size n.

Motivation 0	Introduction 00000●	First attempts and first bounds 00000000	Analytic approach 0000	Some classes of λ terms 000000
T_n se	quence			

```
First values of T_n sequence:
```

 $0, 1, 2, 4, 13, 42, 139, 506, 1915, 7558, 31092, 132170, 580466, \ldots$


```
First values of T_n sequence:
```

 $0, 1, 2, 4, 13, 42, 139, 506, 1915, 7558, 31092, 132170, 580466, \ldots$

Already in the On-Line Encyclopedia of Integer Sequences (Christophe Raffalli, 9.02.2008) http://www.research.att.com/~njas/sequences/A135501


```
First values of T_n sequence:
```

 $0, 1, 2, 4, 13, 42, 139, 506, 1915, 7558, 31092, 132170, 580466, \ldots$

Already in the On-Line Encyclopedia of Integer Sequences (Christophe Raffalli, 9.02.2008) http://www.research.att.com/~njas/sequences/A135501

...with a note: Is there a generating function?

First attempts and first bounds

Analytic approach

Some classes of λ terms 000000

A good-looking recurrence

T(n,k)

Let T(n, k) denote the number of lambda trees with *n* vertices and in which each leaf can be labelled either in the standard way or with an element from a set of *k* elements.

.

First attempts and first bounds •0000000 Analytic approach

Some classes of λ terms 000000

A good-looking recurrence

T(n,k)

Let T(n, k) denote the number of lambda trees with *n* vertices and in which each leaf can be labelled either in the standard way or with an element from a set of *k* elements.

A nice [?] recurrence

$$T(0,k) = 0$$

$$T(1,k) = k$$

$$T(n,k) = T(n-1,k+1) + \sum_{i=1}^{n-2} T(i,k)T(n-i-1,k).$$

Motivation	Introduction	First attempts and first bounds	Analytic approach	Some classes of λ terms 000000
○	000000	0●000000	0000	

Let us define

$$\varphi_k(x) = \sum_{n \in \mathbb{N}} T(n, k) x^n$$

We get

$$\varphi_{k+1}(x) = \frac{\varphi_k(x)}{x} - (\varphi_k(x))^2 - k$$

Motivation	Introduction	First attempts and first bounds	Analytic approach	Some classes of λ terms
		0000000		

Let us define

$$\varphi_k(x) = \sum_{n \in \mathbb{N}} T(n, k) x^n$$

We get

$$\varphi_{k+1}(x) = \frac{\varphi_k(x)}{x} - (\varphi_k(x))^2 - k$$

Well, $\varphi_0(x)$ is the generating function for T_n ...

Motivation	Introduction	First attempts and first bounds	Analytic approach	Some classes of λ terms
		000000		

T(n, k) as a polynomial

We can look at T(n, k) as at the polynomial in k:

Motivation	Introduction	First attempts and first bounds	Analytic approach	Some classes of λ terms
		000000		

T(n, k) as a polynomial

We can look at T(n, k) as at the polynomial in k:

$$T(1, k) = k,$$

$$T(2, k) = k + 1,$$

$$T(3, k) = k^{2} + k + 2,$$

$$T(4, k) = 3k^{2} + 5k + 4,$$

$$T(5, k) = 2k^{3} + 6k^{2} + 17k + 13,$$

$$T(6, k) = 10k^{3} + 26k^{2} + 49k + 42,$$

$$T(7, k) = 5k^{4} + O(k^{3}),$$

$$T(8, k) = 35k^{4} + O(k^{3}).$$

Motivation	Introduction	First attempts and first bounds	Analytic approach	Some classes of λ terms
		0000000		

d_n sequence

Let d_i be defined as follows: $d_0 = 0$ and d_n is the greatest exponent of k in the polynomial T(n, k).

Motivation	Introduction	First attempts and first bounds	Analytic approach	Some classes of λ terms
		0000000		

d_n sequence

Let d_i be defined as follows: $d_0 = 0$ and d_n is the greatest exponent of k in the polynomial T(n, k).

Observation

For any $n \ge 1$ we have

$$d_n = \left\lceil \frac{n}{2} \right\rceil$$

Moreover,

• if *n* is even then $d_n = d_{n-1} = d_i + d_{n-i-1}$ for i = 1, ..., n-2,

• if *n* is odd then
$$d_n = d_{2i-1} + d_{n-2i}$$

for $i = 1, ..., \frac{n-1}{2}$

Motivation	Introduction	First attempts and first bounds	Analytic approach	Some classes of λ terms
0	000000	0000●000	0000	

w_n sequence

Let w_i be the sequence of leading coefficients in T(i, k).

< **∃** → <

Motivation	Introduction	First attempts and first bounds	Analytic approach	Some classes of λ terms
0	000000	0000●000	0000	

w_n sequence

Let w_i be the sequence of leading coefficients in T(i, k).

Observation For any $s \in \mathbb{N}$ we have $w_0 = 0$ $w_1 = 1$ $w_{2s+1} = \sum_{i=1}^{s} w_{2i-1} \cdot w_{2s-2i+1}$ i=1 $w_{2s+2} = w_{2s+1} + \sum_{i=1}^{2s} w_i \cdot w_{2s-i+1}.$ i=0

• □ ▶ • • □ ▶ • • □ ▶ •

3

Motivation	Introduction	First attempts and first bounds	Analytic approach	Some classes of λ terms
		00000000		

w_n sequence

Lemma

For any natural number s the following equalities hold:

$$w_{2s+1} = \frac{1}{s+1} {\binom{2s}{s}} = C(s),$$
$$w_{2s} = \frac{1}{2} {\binom{2s}{s}} = \frac{s+1}{2} C(s).$$

∃ → ∢

Motivation	Introduction	First attempts and first bounds	Analytic approach	Some classes of λ ter
		00000000		

...and a bound at last

Lower bound

For any n > 0 the following inequalities hold:

$$T(2n,k) \ge \frac{(n+1)C(n)}{2}k^n$$
$$T(2n+1,k) \ge C(n)k^{n+1}.$$

Motivation	Introduction	First attempts and first bounds	Analytic approach	Some classes of λ
		00000000		

...and a bound at last

Lower bound

For any n > 0 the following inequalities hold:

$$T(2n,k) \ge \frac{(n+1)C(n)}{2}k^n$$
$$T(2n+1,k) \ge C(n)k^{n+1}.$$

Upgraded lower bound

For any n > 0 the following inequality holds:

$$T(n,k) \ge M(n-1) + \sum_{i=1}^{\left\lceil \frac{n}{2} \right\rceil} M(n,i)k^i$$

Motivation 0	Introduction 000000	First attempts and first bounds 0000000●	Analytic approach 0000	Some classes of λ terms 000000

Upper bound

Upper bound

For any n > 0 the following inequality holds:

$$T(n,k) \leqslant \sum_{i=1}^{\left\lceil \frac{n}{2} \right\rceil} M(n,i)(n-2i+k+1)^i$$

∃ → ∢

Motivation 0	Introduction 000000	First attempts and first bounds 00000000	Analytic approach ●000	Some classes of λ terms
A nev	w idea			

Let us consider F(n, m, k) where

- *n* is the number of internal nodes
- *m* is the number of "open" leaves
- k is the number of "closed" leaves

Motivation ○	I ntroduction 000000	First attempts and first bounds 00000000	Analytic approach ●000	Some classes of λ terms 000000
A nev	<i>w</i> idea			

Let us consider F(n, m, k) where

- *n* is the number of internal nodes
- *m* is the number of "open" leaves
- k is the number of "closed" leaves

Now, $\sum_{n+k=N} F(n,0,k)$ is the number of lambda trees of size N Define

$$f(z, u, v) = \sum_{n, m, k \in \mathbb{N}} F(n, m, k) z^n u^m v^k$$

Analytic approach ○●○○ Some classes of λ terms 000000

The equation (D. Gardy, B. Gittenberger)

Functional equation

$$f(z, u, v) = zf(z, u, v)^2 + zf(z, u + v, v) + u$$

→ < Ξ → <</p>

Analytic approach ○●○○ Some classes of λ terms 000000

The equation (D. Gardy, B. Gittenberger)

Functional equation

$$f(z, u, v) = zf(z, u, v)^2 + zf(z, u + v, v) + u$$

What we need is

Katarzyna Grygiel On some combinatorial problems in lambda calculus

(日) (同) (三) (三)

э

Motivation	Introduction	First attempts and first bounds	Analytic approach	Some classes of λ terms
0	000000	00000000	00●0	

Partial answer

The solution is in the form of nested radicals. Its radius of convergence is equal to 0.

< ∃ > <

Motivation	Introduction	First attempts and first bounds	Analytic approach	Some classes of λ terms
			0000	

Partial answer

The solution is in the form of nested radicals. Its radius of convergence is equal to 0.

$$\frac{z}{2} - \frac{z}{2}\sqrt{1 - 2z - 4z^2}$$

$$\frac{z}{2} - \frac{z}{2}\sqrt{1 - 2z - 4z^2 + 2z\sqrt{1 - 2z - 8z^2}}$$

$$\frac{z}{2} - \frac{z}{2}\sqrt{1 - 2z - 4z^2 + 2z\sqrt{1 - 2z - 8z^2 + 2z\sqrt{1 - 2z - 12z^2}}}$$

< ∃ > <

Motivation 0	Introduction 000000	First attempts and first bounds 00000000	Analytic approach 000●	Some classes of λ terms 000000
۸ مرب				
Agu	ess			

$$T_n \sim \frac{3^n n}{9} \Gamma\left(\frac{n}{3}\right)$$

where
$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$$

イロト イヨト イヨト イヨト

æ

Motivation	Introduction	First attempts and first bounds	Analytic approach	Some classes of λ terms
0	000000	00000000	0000	$\bullet 00000$

λ *l*-terms

A lambda term is called a λI -term if in its every subterm of the form $\lambda x.M$, x is a free variable in M.

Motivation	Introduction	First attempts and first bounds	Analytic approach	Some classes of λ terms
0	000000	00000000	0000	●00000

λ *l*-terms

A lambda term is called a λI -term if in its every subterm of the form $\lambda x.M$, x is a free variable in M.

l(n,k)

Let I(n, 0) denote the number of closed λI -terms of length n and I(n, k) for $k \ge 1$ — the number of such λI -terms M that are of length n and FV(M) is of cardinality k.

Motivation	Introduction	First attempts and first bounds	Analytic approach	Some classes of λ terms
0	000000	00000000	0000	●00000

λ *l*-terms

A lambda term is called a λI -term if in its every subterm of the form $\lambda x.M$, x is a free variable in M.

l(n,k)

Let I(n, 0) denote the number of closed λI -terms of length n and I(n, k) for $k \ge 1$ — the number of such λI -terms M that are of length n and FV(M) is of cardinality k.

First values of I(n, 0)

 $0, 0, 1, 0, 1, 5, 2, 26, 65, 141, \ldots$

・ロト ・ 同ト ・ ヨト ・ ヨ

Motivation	Introduction	First attempts and first bounds	Analytic approach	Some classes of λ terms 000000
0	000000	00000000	0000	

... and the recurrence

$$I(0, k) = I(1, 0) = 0$$

$$I(1, 1) = 1$$

$$I(n, k) = I(n - 1, k + 1) + \sum_{i=0}^{n-1} \sum_{k_1, k_2 \ge 0} \binom{k}{k_1 + k_2 - k} \cdot \binom{2k - k_1 - k_2}{k - k_2} I(i, k_1) I(n - i - 1, k_2).$$

▲御▶ ▲ 臣▶ ▲ 臣▶

э

Motivation	Introduction	First attempts and first bounds	Analytic approach	Some classes of λ terms 0000000
0	000000	00000000	0000	

λBCI -terms

A lambda term is called a λBCI -term if it is a λI -term and in its every subterm of the form $\lambda x.M$, x occurs free in M exactly once.

Motivation	Introduction	First attempts and first bounds	Analytic approach	Some classes of λ terms 000000
0	000000	00000000	0000	

λBCI -terms

A lambda term is called a λBCI -term if it is a λI -term and in its every subterm of the form $\lambda x.M$, x occurs free in M exactly once.

B(n,k)

Let B(n, k) denote the number of λBCI -terms of length n and exactly k free variables.

Motivation	Introduction	First attempts and first bounds	Analytic approach	Some classes of λ terms 000000
0	000000	00000000	0000	

λBCI -terms

A lambda term is called a λBCI -term if it is a λI -term and in its every subterm of the form $\lambda x.M$, x occurs free in M exactly once.

B(n,k)

Let B(n, k) denote the number of λBCI -terms of length n and exactly k free variables.

First values of B(n, 0)

 $0, 0, 1, 0, 0, 5, 0, 0, 60, 0, 0, 1105, \ldots$

Motivation	Introduction	First attempts and first bounds	Analytic approach	Some classes of λ terms 000000
0	000000	00000000	0000	

... and the recurrence

$$B(0,k) = B(1,0) = 0$$

$$B(1,1) = 1$$

$$B(n,k) = B(n-1, k+1) + \sum_{i=0}^{n-1} \sum_{j=0}^{k} {k \choose j} B(i,j) B(n-i-1, k-j).$$

< □ > < □ > < □ > < □ > < □ > < □ >

э

Motivation	Introduction	First attempts and first bounds	Analytic approach	Some classes of λ terms 000000
0	000000	00000000	0000	

Let us define

$$b(x,y) = \sum_{k,n \ge 0} \frac{B(n,k)}{k!} x^n y^k$$

Motivation	Introduction	First attempts and first bounds	Analytic approach	Some classes of λ terms
0	000000	00000000	0000	

Let us define

$$b(x,y) = \sum_{k,n \ge 0} \frac{B(n,k)}{k!} x^n y^k$$

Differential equation

Function b(x, y) satisfies the following equation

$$b(x,y) = xy + xb^{2}(x,y) + x\frac{\mathrm{d}b(x,y)}{\mathrm{d}y}$$

First attempts and first bounds

Analytic approach

Some classes of λ terms 00000

Application vs. abstraction

Problem

What is the density of lambda terms being in form of abstraction?

Katarzyna Grygiel On some combinatorial problems in lambda calculus

→ < Ξ → <</p>

Some classes of λ terms 00000

Application vs. abstraction

Problem

What is the density of lambda terms being in form of abstraction?

Conjecture

A random closed lambda term is in the form of abstraction.

Motivation	Introduction	First attempts and first bounds	Analytic approach	Some classes of λ terms

The end.

Katarzyna Grygiel On some combinatorial problems in lambda calculus