On some combinatorial problems in lambda calculus

Katarzyna Grygiel

Computational Logic and Applications
Kraków 2008

Outline

- Motivation

Outline

- Motivation
- Lambda trees, lambda terms

Outline

- Motivation
- Lambda trees, lambda terms
- First attempts: hits and misses

Outline

- Motivation
- Lambda trees, lambda terms
- First attempts: hits and misses
- Some bounds

Outline

- Motivation
- Lambda trees, lambda terms
- First attempts: hits and misses
- Some bounds
- Analytic approach

Outline

- Motivation
- Lambda trees, lambda terms
- First attempts: hits and misses
- Some bounds
- Analytic approach
- Some other questions

Preliminary problem

Question

How many programs have the halting property?

Preliminary problem

Question

How many programs have the halting property?

In terms of lambda calculus: compute the following limit

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{SNTerms}(n)}{\operatorname{Terms}(n)}=?
$$

where SNTerms(n) denotes the number of closed lambda terms of length n that strongly normalize and $\operatorname{Terms}(n)$ is the number of all closed lambda terms of length n.

Catalan numbers

Binary tree

A binary tree is a rooted tree in which each vertex has up to two children and each child node is called left or right.

Catalan numbers

Binary tree

A binary tree is a rooted tree in which each vertex has up to two children and each child node is called left or right.

Catalan numbers

$C(n)$ - the number of binary trees with exactly n leaves
First values: $1,1,2,5,14,42, \ldots$
Generating function: $c(x)=\frac{1-\sqrt{1-4 x}}{2 x}$,
Exact formula: $C(n)=\frac{1}{n+1}\binom{2 n}{n}$.

Motzkin numbers

Unary-binary tree

A unary-binary tree is a rooted tree in which each vertex has up to two children.

Motzkin numbers

Unary-binary tree

A unary-binary tree is a rooted tree in which each vertex has up to two children.

Motzkin numbers

$M(n)$ - the number of u-b trees with exactly n nodes
First values: $1,1,2,4,9,21,51,127,323, \ldots$
Generating function: $m(x)=\frac{1-x-\sqrt{(1-3 x)(1+x)}}{2 x}$
Asymptotics: $M(n) \sim 3^{n} \sqrt{\frac{3}{4 \pi n^{3}}}$

Specified Motzkin numbers

Specified Motzkin numbers

$M(n, k)$ - the number of rooted u-b trees with n vertices and exactly k leaves
Generating function: $m(x, y)=\frac{1-x-\sqrt{(1-x)^{2}-4 x^{2} y}}{2 x}$
Exact formula: $M(n, k)=C(k-1)\binom{n-1}{n-2 k+1}$

Lambda trees

Lambda tree

A lambda tree is a unary-binary tree in which each leaf can be labelled in as many ways as many vertices with exactly one child occur on the path from the leaf to the root of the tree.

Lambda trees

Lambda tree

A lambda tree is a unary-binary tree in which each leaf can be labelled in as many ways as many vertices with exactly one child occur on the path from the leaf to the root of the tree.

Problem

How many lambda trees of a given size are there?

What are lambda trees actually?

Since we do not bother about the names of variables, we count lambda terms up to α-conversion. We count the length of a lambda term as follows:

$$
\begin{aligned}
|x| & =1 \\
|\lambda x \cdot M| & =1+|M| \\
|M N| & =1+|M|+|N|
\end{aligned}
$$

What are lambda trees actually?

Since we do not bother about the names of variables, we count lambda terms up to α-conversion. We count the length of a lambda term as follows:

$$
\begin{aligned}
|x| & =1 \\
|\lambda x \cdot M| & =1+|M| \\
|M N| & =1+|M|+|N|
\end{aligned}
$$

Correspondence

There is a one-to-one correspondence between closed lambda terms of length n and lambda trees of size n.

T_{n} sequence

First values of T_{n} sequence:
$0,1,2,4,13,42,139,506,1915,7558,31092,132170,580466, \ldots$

T_{n} sequence

First values of T_{n} sequence:
$0,1,2,4,13,42,139,506,1915,7558,31092,132170,580466, \ldots$

Already in the On-Line Encyclopedia of Integer Sequences (Christophe Raffalli, 9.02.2008) http://www.research.att.com/ ${ }^{\text {n }}$ jas/sequences/A135501

T_{n} sequence

First values of T_{n} sequence:
$0,1,2,4,13,42,139,506,1915,7558,31092,132170,580466, \ldots$

Already in the On-Line Encyclopedia of Integer Sequences (Christophe Raffalli, 9.02.2008) http://www.research.att.com/~njas/sequences/A135501
...with a note: Is there a generating function?

A good-looking recurrence

$T(n, k)$

Let $T(n, k)$ denote the number of lambda trees with n vertices and in which each leaf can be labelled either in the standard way or with an element from a set of k elements.

A good-looking recurrence

$T(n, k)$

Let $T(n, k)$ denote the number of lambda trees with n vertices and in which each leaf can be labelled either in the standard way or with an element from a set of k elements.

A nice [?] recurrence

$$
\begin{aligned}
& T(0, k)=0 \\
& T(1, k)=k \\
& T(n, k)=T(n-1, k+1)+\sum_{i=1}^{n-2} T(i, k) T(n-i-1, k) .
\end{aligned}
$$

Let us define

$$
\varphi_{k}(x)=\sum_{n \in \mathbb{N}} T(n, k) x^{n}
$$

We get

$$
\varphi_{k+1}(x)=\frac{\varphi_{k}(x)}{x}-\left(\varphi_{k}(x)\right)^{2}-k
$$

Let us define

$$
\varphi_{k}(x)=\sum_{n \in \mathbb{N}} T(n, k) x^{n}
$$

We get

$$
\varphi_{k+1}(x)=\frac{\varphi_{k}(x)}{x}-\left(\varphi_{k}(x)\right)^{2}-k
$$

Well, $\varphi_{0}(x)$ is the generating function for $T_{n} \ldots$

$T(n, k)$ as a polynomial

We can look at $T(n, k)$ as at the polynomial in k :

$T(n, k)$ as a polynomial

We can look at $T(n, k)$ as at the polynomial in k :

$$
\begin{aligned}
& T(1, k)=k, \\
& T(2, k)=k+1, \\
& T(3, k)=k^{2}+k+2, \\
& T(4, k)=3 k^{2}+5 k+4, \\
& T(5, k)=2 k^{3}+6 k^{2}+17 k+13, \\
& T(6, k)=10 k^{3}+26 k^{2}+49 k+42, \\
& T(7, k)=5 k^{4}+O\left(k^{3}\right), \\
& T(8, k)=35 k^{4}+O\left(k^{3}\right) .
\end{aligned}
$$

d_{n} sequence

Let d_{i} be defined as follows: $d_{0}=0$ and d_{n} is the greatest exponent of k in the polynomial $T(n, k)$.

d_{n} sequence

Let d_{i} be defined as follows: $d_{0}=0$ and d_{n} is the greatest exponent of k in the polynomial $T(n, k)$.

Observation

For any $n \geqslant 1$ we have

$$
d_{n}=\left\lceil\frac{n}{2}\right\rceil
$$

Moreover,

- if n is even then $d_{n}=d_{n-1}=d_{i}+d_{n-i-1}$ for $i=1, \ldots, n-2$,
- if n is odd then $d_{n}=d_{2 i-1}+d_{n-2 i}$ for $i=1, \ldots, \frac{n-1}{2}$

w_{n} sequence

Let w_{i} be the sequence of leading coefficients in $T(i, k)$.

w_{n} sequence

Let w_{i} be the sequence of leading coefficients in $T(i, k)$.

Observation

For any $s \in \mathbb{N}$ we have

$$
\begin{aligned}
w_{0} & =0 \\
w_{1} & =1 \\
w_{2 s+1} & =\sum_{i=1}^{s} w_{2 i-1} \cdot w_{2 s-2 i+1} \\
w_{2 s+2} & =w_{2 s+1}+\sum_{i=0}^{2 s} w_{i} \cdot w_{2 s-i+1}
\end{aligned}
$$

w_{n} sequence

Lemma

For any natural number s the following equalities hold:

$$
\begin{aligned}
w_{2 s+1} & =\frac{1}{s+1}\binom{2 s}{s}=C(s) \\
w_{2 s} & =\frac{1}{2}\binom{2 s}{s}=\frac{s+1}{2} C(s) .
\end{aligned}
$$

. . . and a bound at last

Lower bound

For any $n>0$ the following inequalities hold:

$$
\begin{aligned}
T(2 n, k) & \geqslant \frac{(n+1) C(n)}{2} k^{n} \\
T(2 n+1, k) & \geqslant C(n) k^{n+1} .
\end{aligned}
$$

. . . and a bound at last

Lower bound

For any $n>0$ the following inequalities hold:

$$
\begin{aligned}
T(2 n, k) & \geqslant \frac{(n+1) C(n)}{2} k^{n} \\
T(2 n+1, k) & \geqslant C(n) k^{n+1} .
\end{aligned}
$$

Upgraded lower bound

For any $n>0$ the following inequality holds:

$$
T(n, k) \geqslant M(n-1)+\sum_{i=1}^{\left\lceil\frac{n}{2}\right\rceil} M(n, i) k^{i}
$$

Upper bound

Upper bound

For any $n>0$ the following inequality holds:

$$
T(n, k) \leqslant \sum_{i=1}^{\left\lceil\frac{n}{2}\right\rceil} M(n, i)(n-2 i+k+1)^{i}
$$

A new idea

Let us consider $F(n, m, k)$ where

- n is the number of internal nodes
- m is the number of "open" leaves
- k is the number of "closed" leaves

A new idea

Let us consider $F(n, m, k)$ where

- n is the number of internal nodes
- m is the number of "open" leaves
- k is the number of "closed" leaves

Now, $\sum_{n+k=N} F(n, 0, k)$ is the number of lambda trees of size N
Define

$$
f(z, u, v)=\sum_{n, m, k \in \mathbb{N}} F(n, m, k) z^{n} u^{m} v^{k}
$$

The equation (D. Gardy, B. Gittenberger)

Functional equation

$$
f(z, u, v)=z f(z, u, v)^{2}+z f(z, u+v, v)+u
$$

The equation (D. Gardy, B. Gittenberger)

Functional equation

$$
f(z, u, v)=z f(z, u, v)^{2}+z f(z, u+v, v)+u
$$

What we need is
Goal

$$
f(z, 0, z)
$$

Partial answer

The solution is in the form of nested radicals. Its radius of convergence is equal to 0 .

Partial answer

The solution is in the form of nested radicals. Its radius of convergence is equal to 0 .

$$
\begin{aligned}
& \frac{z}{2}-\frac{z}{2} \sqrt{1-2 z-4 z^{2}} \\
& \frac{z}{2}-\frac{z}{2} \sqrt{1-2 z-4 z^{2}+2 z \sqrt{1-2 z-8 z^{2}}} \\
& \frac{z}{2}-\frac{z}{2} \sqrt{1-2 z-4 z^{2}+2 z \sqrt{1-2 z-8 z^{2}+2 z \sqrt{1-2 z-12 z^{2}}}}
\end{aligned}
$$

A guess

$$
T_{n} \sim \frac{3^{n} n}{9} \Gamma\left(\frac{n}{3}\right)
$$

where $\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} \mathrm{~d} t$

$\lambda /$-terms

$\lambda /$-terms

A lambda term is called a λI-term if in its every subterm of the form $\lambda x . M, x$ is a free variable in M.

$\lambda /$-terms

λ-terms

A lambda term is called a $\lambda /$-term if in its every subterm of the form $\lambda x \cdot M, x$ is a free variable in M.

I (n, k)
Let $I(n, 0)$ denote the number of closed λl-terms of length n and $I(n, k)$ for $k \geqslant 1$ - the number of such λl-terms M that are of length n and $F V(M)$ is of cardinality k.

$\lambda /$-terms

$\lambda /$-terms

A lambda term is called a $\lambda /$-term if in its every subterm of the form $\lambda x \cdot M, x$ is a free variable in M.

I (n, k)
Let $I(n, 0)$ denote the number of closed λl-terms of length n and $I(n, k)$ for $k \geqslant 1$ - the number of such λl-terms M that are of length n and $F V(M)$ is of cardinality k.

First values of $I(n, 0)$
$0,0,1,0,1,5,2,26,65,141, \ldots$

$\lambda /$-terms

... and the recurrence

$$
\begin{aligned}
I(0, k)= & I(1,0)=0 \\
I(1,1)= & 1 \\
I(n, k)= & I(n-1, k+1)+\sum_{i=0}^{n-1} \sum_{k_{1}, k_{2} \geqslant 0}\binom{k}{k_{1}+k_{2}-k} . \\
& \cdot\binom{2 k-k_{1}-k_{2}}{k-k_{2}} I\left(i, k_{1}\right) I\left(n-i-1, k_{2}\right) .
\end{aligned}
$$

$\lambda B C 1$-terms

$\lambda B C l$-terms

A lambda term is called a $\lambda B C /$-term if it is a $\lambda /$-term and in its every subterm of the form $\lambda x . M, x$ occurs free in M exactly once.

$\lambda \mathrm{BCl}$-terms

$\lambda B C 1$-terms

A lambda term is called a $\lambda B C I$-term if it is a $\lambda /$-term and in its every subterm of the form $\lambda x . M, x$ occurs free in M exactly once.
$B(n, k)$
Let $B(n, k)$ denote the number of $\lambda B C l$-terms of length n and exactly k free variables.

$\lambda B C /$-terms

$\lambda B C 1$-terms

A lambda term is called a $\lambda B C I$-term if it is a $\lambda /$-term and in its every subterm of the form $\lambda x . M, x$ occurs free in M exactly once.
$B(n, k)$
Let $B(n, k)$ denote the number of $\lambda B C l$-terms of length n and exactly k free variables.

First values of $B(n, 0)$

$$
0,0,1,0,0,5,0,0,60,0,0,1105, \ldots
$$

$\lambda B C /$-terms

and the recurrence

$$
\begin{aligned}
B(0, k)= & B(1,0)=0 \\
B(1,1)= & 1 \\
B(n, k)= & B(n-1, k+1)+ \\
& +\sum_{i=0}^{n-1} \sum_{j=0}^{k}\binom{k}{j} B(i, j) B(n-i-1, k-j) .
\end{aligned}
$$

$\lambda B C /$-terms

Let us define

$$
b(x, y)=\sum_{k, n \geqslant 0} \frac{B(n, k)}{k!} x^{n} y^{k}
$$

$\lambda B C l$-terms

Let us define

$$
b(x, y)=\sum_{k, n \geqslant 0} \frac{B(n, k)}{k!} x^{n} y^{k}
$$

Differential equation

Function $b(x, y)$ satisfies the following equation

$$
b(x, y)=x y+x b^{2}(x, y)+x \frac{\mathrm{~d} b(x, y)}{\mathrm{d} y}
$$

Application vs. abstraction

Problem

What is the density of lambda terms being in form of abstraction?

Application vs. abstraction

Problem

What is the density of lambda terms being in form of abstraction?

Conjecture

A random closed lambda term is in the form of abstraction.

The end.

