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Preliminary problem

How many programs have the halting property?
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Motivation

Preliminary problem

How many programs have the halting property?

In terms of lambda calculus: compute the following limit

! SNTerms(n)

im ——————= =7

n—oo  Terms(n)

where SNTerms(n) denotes the number of closed lambda
terms of length n that strongly normalize and Terms(n) is the
number of all closed lambda terms of length n.
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Catalan numbers

Binary tree

A binary tree is a rooted tree in which each vertex has up to
two children and each child node is called left or right.
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Catalan numbers

Binary tree

A binary tree is a rooted tree in which each vertex has up to
two children and each child node is called left or right.

Catalan numbers

C(n) — the number of binary trees with exactly n leaves
First values: 1,1,2,5,14,42 ...
. : 1—+v1-—4x
Generating function: ¢(x) = —
X
1 2
Exact formula: C(n) = < n).
n+1\n
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Motzkin numbers

Unary-binary tree

A unary-binary tree is a rooted tree in which each vertex has
up to two children.
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Motzkin numbers

Unary-binary tree

A unary-binary tree is a rooted tree in which each vertex has
up to two children.

Motzkin numbers

M(n) — the number of u-b trees with exactly n nodes

First values: 1,1,2,4,9,21,51,127,323, ...

1—x—+/(1-3x)(1+x)
2x

Generating function: m(x) =

3
47 n3

Asymptotics: M(n) ~ 3"
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Specified Motzkin numbers

Specified Motzkin numbers

M(n, k) — the number of rooted u-b trees with n vertices and
exactly k leaves

1—x—+/(1—x)2—4x%
2x

Exact formula: M(n, k) = C(k — 1) (n _n2_kl—|— 1)

Generating function: m(x,y) =
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Lambda trees

Lambda tree

A lambda tree is a unary-binary tree in which each leaf can be
labelled in as many ways as many vertices with exactly one
child occur on the path from the leaf to the root of the tree.
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Lambda trees

Lambda tree

A lambda tree is a unary-binary tree in which each leaf can be
labelled in as many ways as many vertices with exactly one
child occur on the path from the leaf to the root of the tree.

Problem

How many lambda trees of a given size are there?
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What are lambda trees actually?

Since we do not bother about the names of variables, we
count lambda terms up to a-conversion.
We count the length of a lambda term as follows:

x| =1
IAx.M| =1+ |M|
IMN| =1+ M|+ |N|
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What are lambda trees actually?

Since we do not bother about the names of variables, we
count lambda terms up to a-conversion.
We count the length of a lambda term as follows:

x| =1

IAx.M| =1+ |M|
IMN| =1+ M|+ |N|

Correspondence

There is a one-to-one correspondence between closed lambda
terms of length n and lambda trees of size n.
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T, sequence

First values of T, sequence:

0,1,2,4,13,42,139,506, 1915, 7558, 31092, 132170, 580466, . .
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T, sequence

First values of T, sequence:

0,1,2,4,13,42,139,506, 1915, 7558, 31092, 132170, 580466, . . .

Already in the On-Line Encyclopedia of Integer Sequences
(Christophe Raffalli, 9.02.2008)
http://www.research.att.com/~“njas/sequences/A135501
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T, sequence

First values of T, sequence:

0,1,2,4,13,42,139,506, 1915, 7558, 31092, 132170, 580466, . . .

Already in the On-Line Encyclopedia of Integer Sequences
(Christophe Raffalli, 9.02.2008)
http://www.research.att.com/~“njas/sequences/A135501

...with a note: s there a generating function?
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A good-looking recurrence

Let T(n, k) denote the number of lambda trees with n vertices
and in which each leaf can be labelled either in the standard
way or with an element from a set of k elements.
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A good-looking recurrence

T(n, k)

Let T(n, k) denote the number of lambda trees with n vertices
and in which each leaf can be labelled either in the standard
way or with an element from a set of k elements.
T(0,k)=0
T(1,k)=k
n—2
T(nk)=T(n—1k+1)+> T(i,k)T(n—i—1,k).
i=1
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Let us define

We get

() = 29 0y — k
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Let us define

neN

We get

prale) = 22— ()2

Well, ¢g(x) is the generating function for T,,. ..
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T(n, k) as a polynomial

We can look at T(n, k) as at the polynomial in k:
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T(n, k) as a polynomial

We can look at T(n, k) as at the polynomial in k:

T(1,k) = k,

T(2,k) =k +1,

T(3,k) =k*+ k +2,

T(4,k) = 3k® + 5k + 4,

T(5, k) =2k + 6k* + 17k + 13,
T(6, k) = 10k® + 26k> + 49k + 42,
T(7,k) = 5k* + O(k®),

T(8, k) = 35k* + O(k%).
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d, sequence

Let d; be defined as follows: dy = 0 and d, is the greatest
exponent of k in the polynomial T(n, k).
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d, sequence

Let d; be defined as follows: dy = 0 and d, is the greatest
exponent of k in the polynomial T(n, k).

For any n > 1 we have

Moreover,
o ifniseventhend,=d,_1 =d +d,_i_1
fori=1,...,n—2,
o if nis odd then d, = db;_1 + d,_»;

o n—1
fori=1,...,%
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Wp sequence

Let w; be the sequence of leading coefficients in T(i, k).
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Wp sequence

Let w; be the sequence of leading coefficients in T(i, k).

For any s € N we have

W():O

W1:1

s
Wost1 = E Woj—1 * Wos—2j+1
i=1

2s

Wisio = Wosyi1 + E Wi - Wos_ji1.
i=0
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Wp sequence

For any natural number s the following equalities hold:
1 2s
W2s+1 = stils /)~ (s),
1/2s s+1
Wos — E(s) = > C(S)

Katarzyna Grygiel On some combinatorial problems in lambda calculus



First attempts and first bounds
00000080

..and a bound at last

Lower bound

For any n > 0 the following inequalities hold:

(n+1)C(n)
T(2n, k) > o

T(2n+1,k) > C(n)k"t!.

kn
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...and a bound at last

For any n > 0 the following inequalities hold:

(n+1)C(n)
T(2n, k) > o

T(2n+1,k) > C(n)k™.

Upgraded lower bound

For any n > 0 the following inequality holds:

H
T(n k)= M(n—1)+ > M(n, i)k

kn
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Upper bound

For any n > 0 the following inequality holds:

H
T(n, k) <> M(n,i)(n—2i+k+1)

i=1
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Analytic approach
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A new idea

Let us consider F(n, m, k) where
@ nis the number of internal nodes
@ m is the number of “open” leaves

@ k is the number of “closed” leaves
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Analytic approach
[ JeJele]

A new idea

Let us consider F(n, m, k) where
@ nis the number of internal nodes
@ m is the number of “open” leaves

@ k is the number of “closed” leaves

Now, Z (n,0, k) is the number of lambda trees of size N
n+k=N
Define

f(z,u,v) Z F(n,m, k)z"u™v¥
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The equation (D. Gardy, B. Gittenberger)

Functional equation

f(z,u,v) = zf(z,u,v)* + zf(z,u + v,v) + u
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Analytic approach
0@00

The equation (D. Gardy, B. Gittenberger)

Functional equation

f(z,u,v) = zf(z,u,v)* + zf(z,u + v,v) + u

What we need is

f(z,0,z)
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Partial answer

The solution is in the form of nested radicals. Its radius of
convergence is equal to 0.
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Analytic approach
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Partial answer

The solution is in the form of nested radicals. Its radius of
convergence is equal to 0.

2—5\/1—22—422

2 2124224 20T 22 82

2 2

z z

5 5\/1—22—422+22\/1—22—822+22\/1—22—1222
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where ['(z) = / t* e t dt
0
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Ml-terms

A lambda term is called a A/-term if in its every subterm of
the form Ax.M, x is a free variable in M.

Katarzyna Grygiel On some combinatorial problems in lambda calculus



Motivation In ction i pts and first bounds / ic approach Some classes of \ terms
[e O O 00000

Ml-terms

A lambda term is called a A/-term if in its every subterm of
the form Ax.M, x is a free variable in M.

Let /(n,0) denote the number of closed A/-terms of length n
and /(n, k) for k > 1 — the number of such A/-terms M that
are of length n and FV(M) is of cardinality k.
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Ml-terms

A lambda term is called a A/-term if in its every subterm of
the form Ax.M, x is a free variable in M.

Let /(n,0) denote the number of closed A/-terms of length n
and /(n, k) for k > 1 — the number of such A/-terms M that
are of length n and FV(M) is of cardinality k.

First values of /(n,0)
0,0,1,0,1,5,2,26, 65,141, . ..
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I(n k) =I(n— 1,k +1) +Z 3 <k1+k2 )

i=0 kq,kp>0

2k — ki — ky\ . .
. ( P )I(/,kl)l(n— i—1, k).
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ABCl-terms

A lambda term is called a ABC/-term if it is a A\/-term and in
its every subterm of the form Ax.M, x occurs free in M
exactly once.
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ABCl-terms

ABCl-terms

A lambda term is called a ABC/-term if it is a A\/-term and in
its every subterm of the form Ax.M, x occurs free in M
exactly once.

\

B(n, k)
Let B(n, k) denote the number of ABC/-terms of length n and
exactly k free variables.

v
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ABCl-terms

ABCl-terms

A lambda term is called a ABC/-term if it is a A\/-term and in
its every subterm of the form Ax.M, x occurs free in M
exactly once.

B(n, k)
Let B(n, k) denote the number of ABC/-terms of length n and
exactly k free variables.

First values of B(n,0)

0,0,1,0,0,5,0,0,60,0,0,1105,...
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ABCl-terms

...and the recurrence

B(0, k) =B(1,0) = 0
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ABCl-terms

Let us define
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ABCl-terms

Let us define

Differential equation

Function b(x, y) satisfies the following equation

db(x, y)
dy

b(x,y) = xy + xb*(x,y) + x
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Application vs. abstraction

Problem

What is the density of lambda terms being in form of
abstraction?
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Application vs. abstraction

Problem

What is the density of lambda terms being in form of
abstraction?

A random closed lambda term is in the form of abstraction.

Katarzyna Grygiel On some combinatorial problems in lambda calculus



The end.
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