Dark matter among and/or trees

Jakub Kozik

Theoretical Computer Science Jagiellonian University

6 June 2008 Versailles-Lyon-Chambery-Kraków Workshop on Computational Logic and Applications

• $\operatorname{Var} = \{x_1, x_2, x_3, \dots\}$ - countable set of variables

• $\operatorname{Var}_k = \{x_1, \ldots, x_k\}$

Definition

 \mathcal{T}_k - set of and/or trees with k-variables is a minimal set such that:

x_i, ¬x_i ∈ T_k, for each x_i ∈ Var_k,
 (t₁ ∧ t₂), (t₁ ∨ t2), for each t₁, t₂ ∈ T_k
 T_k(n) - the set of elements of T_k of size n.

Observation

Every $t \in \mathcal{T}_k$ defines some function $I(t) : \{0,1\}^k \to \{0,1\}$.

$$(I:\mathcal{T}_k \to \{0,1\}^{\{0,1\}^k})$$

• Var = { x_1, x_2, x_3, \dots } - countable set of variables

•
$$\operatorname{Var}_k = \{x_1, \ldots, x_k\}$$

Definition

 \mathcal{T}_k - set of and/or trees with k-variables is a minimal set such that:

x_i, ¬x_i ∈ T_k, for each x_i ∈ Var_k,
 (t₁ ∧ t₂), (t₁ ∨ t2), for each t₁, t₂ ∈ T_k
 T_k(n) - the set of elements of T_k of size n.

Observation

Every $t \in \mathcal{T}_k$ defines some function $I(t) : \{0,1\}^k \to \{0,1\}$.

$$(I: \mathcal{T}_k \to \{0,1\}^{\{0,1\}^k})$$

Definition

 \mathcal{T}_k - set of and/or trees with *k*-variables is a minimal set such that:

Observation

Every $t \in \mathcal{T}_k$ defines some function $I(t) : \{0,1\}^k \to \{0,1\}$.

$$(I: T_k \to \{0,1\}^{\{0,1\}^k})$$

э

∃ ▶ ∢

Definition

 \mathcal{T}_k - set of and/or trees with *k*-variables is a minimal set such that:

•
$$x_i, \neg x_i \in \mathcal{T}_k$$
, for each $x_i \in \operatorname{Var}_k$,
• $(t_1 \wedge t_2), (t_1 \vee t_2)$, for each $t_1, t_2 \in \mathcal{T}_k$

 $\mathcal{T}_k(n)$ - the set of elements of \mathcal{T}_k of size n.

Observation

Every $t \in \mathcal{T}_k$ defines some function $I(t) : \{0,1\}^k \to \{0,1\}$.

$$(I: T_k \to \{0,1\}^{\{0,1\}^k})$$

Definition

 \mathcal{T}_k - set of and/or trees with *k*-variables is a minimal set such that:

Observation

Every $t \in \mathcal{T}_k$ defines some function $I(t) : \{0,1\}^k \to \{0,1\}$.

$$(I: T_k \to \{0,1\}^{\{0,1\}^k})$$

э

Definition

 \mathcal{T}_k - set of and/or trees with *k*-variables is a minimal set such that:

Observation

Every $t \in \mathcal{T}_k$ defines some function $I(t) : \{0,1\}^k \to \{0,1\}$.

$$(I: \mathcal{T}_k \to \{0,1\}^{\{0,1\}^k})$$

(E)

э

Fix $k, n \in \mathbb{N}$.

 $u_{T_k(n)}$ - uniform probability distribution on the (finite) set $\mathcal{T}_k(n)$. FOR $f:0,1^k o 0,1$ PUT $P_k[n](f)=u_{\mathcal{T}_k(n)}(I^{-1}(f)).$

 $P_k[n]$ is a probability distribution on $\{0,1\}^{\{0,1\}^k}$.

♬▶ ◀글▶ ◀달

Fix $k, n \in \mathbb{N}$.

 $u_{\mathcal{T}_k(n)}$ - uniform probability distribution on the (finite) set $\mathcal{T}_k(n)$.

 $P_k[n]$ is a probability distribution on $\{0,1\}^{\{0,1\}^k}$.

同 ト イ ヨ ト イ ヨ ト

Fix $k, n \in \mathbb{N}$.

 $u_{\mathcal{T}_k(n)}$ - uniform probability distribution on the (finite) set $\mathcal{T}_k(n)$.

FOR

$$f:0,1^k\to 0,1$$

PUT

$$P_k[n](f) = u_{T_k(n)}(I^{-1}(f)).$$

 $P_k[n]$ is a probability distribution on $\{0,1\}^{\{0,1\}^k}$

♬▶ ◀글▶ ◀달

Fix $k, n \in \mathbb{N}$.

 $u_{\mathcal{T}_k(n)}$ - uniform probability distribution on the (finite) set $\mathcal{T}_k(n)$.

FOR

$$f:0,1^k \rightarrow 0,1$$

PUT

$$P_k[n](f) = u_{T_k(n)}(I^{-1}(f)).$$

 $P_k[n]$ is a probability distribution on $\{0,1\}^{\{0,1\}^k}$.

< ∃ > <

Theorem (Lefmann, Savicki 1997)

There exists distribution P_k on the set $\{0,1\}^{\{0,1\}^k}$ such that:

$$P_k[n](f) \to_{n \to \infty} P_k(f)$$

for every $f \in \{0,1\}^{\{0,1\}^k}$.

Equivalently

$$P_k(f) = \lim_{n \to \infty} \frac{Card((I^{-1}(f) \cap \mathcal{T}_k(n)))}{Card(\mathcal{T}_k(n))}$$

→ Ξ →

Theorem (Lefmann, Savicki 1997)

There exists distribution P_k on the set $\{0,1\}^{\{0,1\}^k}$ such that:

$$P_k[n](f) \to_{n \to \infty} P_k(f)$$

for every $f \in \{0,1\}^{\{0,1\}^k}$.

Equivalently

$$P_k(f) = \lim_{n \to \infty} \frac{Card((I^{-1}(f) \cap \mathcal{T}_k(n)))}{Card(\mathcal{T}_k(n))}$$

Non constant f.

Upper bound - B. Chauvin, P. Flajolet, D. Gardy, and B. Gittenberger 2004

$$P_k(f) \le (1 + O(1/k))exp(-c\frac{L(f)}{k^2})$$

for some constant c > 0.

Lower bound - Lefmann, Savicki 1997

$$\frac{1}{4}(8k)^{-L(f)-1} \le P_k(f)$$

Improved lower bound - D. Gady, A. Woods 2005

$$\frac{4m(f)}{(16k)^{L(f)+1}} \le P_k(f)$$

Non constant f.

Upper bound - B. Chauvin, P. Flajolet, D. Gardy, and B. Gittenberger 2004

$$P_k(f) \leq (1+O(1/k))exp(-crac{L(f)}{k^2})$$

for some constant c > 0.

Lower bound - Lefmann, Savicki 1997

$$\frac{1}{4}(8k)^{-L(f)-1} \le P_k(f)$$

Improved lower bound - D. Gady, A. Woods 2005

$$\frac{4m(f)}{(16k)^{L(f)+1}} \le P_k(f)$$

Non constant f.

Upper bound - B. Chauvin, P. Flajolet, D. Gardy, and B. Gittenberger 2004

$$P_k(f) \leq (1+O(1/k))exp(-crac{L(f)}{k^2})$$

for some constant c > 0.

Lower bound - Lefmann, Savicki 1997

$$\frac{1}{4}(8k)^{-L(f)-1} \le P_k(f)$$

Improved lower bound - D. Gady, A. Woods 2005

$$\frac{4m(f)}{(16k)^{L(f)+1}} \le P_k(f)$$

Non constant f.

Upper bound - B. Chauvin, P. Flajolet, D. Gardy, and B. Gittenberger 2004

$$P_k(f) \leq (1+O(1/k))exp(-crac{L(f)}{k^2})$$

for some constant c > 0.

Lower bound - Lefmann, Savicki 1997

$$\frac{1}{4}(8k)^{-L(f)-1} \le P_k(f)$$

Improved lower bound - D. Gady, A. Woods 2005

$$\frac{4m(f)}{(16k)^{L(f)+1}} \le P_k(f)$$

Focus on low complexities.

f - non-constant function. There exists positive constant B_f such that

$$P_k(f) \sim_k B_f k^{-L(f)-1}$$

Corollary

Lower bound is quite good for the functions with very low complexity.

Focus on low complexities.

Theorem (J.K. 2007)

f - non-constant function. There exists positive constant B_f such that

$$P_k(f) \sim_k B_f k^{-L(f)-1}$$

Corollary

Lower bound is quite good for the functions with very low complexity.

□ > < = > <

Focus on low complexities.

Theorem (J.K. 2007)

f - non-constant function. There exists positive constant B_f such that

$$P_k(f) \sim_k B_f k^{-L(f)-1}$$

Corollary

Lower bound is quite good for the functions with very low complexity.

What next? Big complexity ?

Uniform counting result

A fraction tending to 1 (as $k \to \infty$) of boolean functions in k variables have tree complexity at least $2^k / \log k$.

Guess

The set of functions with high complexity should have a big measure $P_k(_)$.

What next? Big complexity ?

Uniform counting result

A fraction tending to 1 (as $k \to \infty$) of boolean functions in k variables have tree complexity at least $2^k/logk$.

Guess

The set of functions with high complexity should have a big measure $P_k(_)$.

< ∃ → <

What next? Big complexity ?

Uniform counting result

A fraction tending to 1 (as $k \to \infty$) of boolean functions in k variables have tree complexity at least $2^k/logk$.

Guess

The set of functions with high complexity should have a big measure $P_k(_)$.

But... Why the result for low complexities hold?

Definition (Negative pattern

$$N \to N \lor N | \Box \land N | \bullet$$

Definition (Positive pattern)

$$P \to \Box \lor P \middle| P \land P \middle| \bullet$$

Jakub Kozik Dark matter among and/or trees

▲□ ▶ ▲ □ ▶ ▲ □ ▶

э

But... Why the result for low complexities hold?

Definition (Negative pattern)

$$N \to N \vee N | \Box \wedge N | \bullet$$

Definition (Positive pattern)

$$P \to \Box \lor P \middle| P \land P \middle| \bullet$$

Jakub Kozik Dark matter among and/or trees

同 ト イヨ ト イヨ ト

э

But... Why the result for low complexities hold?

Definition (Negative pattern)

$$N \to N \lor N | \Box \land N | \bullet$$

Definition (Positive pattern)

$$P \to \Box \lor P | P \land P | \bullet$$

Jakub Kozik Dark matter among and/or trees

• = • •

Distribution of numbers of positive leaves

Prob(tree of size *n* has *m* positive leaves)
$$\rightarrow_{n \rightarrow \infty} C_{m-1}(2m-1)(\frac{2}{\alpha})^m$$

Corollary

Most of trees have small number od positive leaves.

Corollary

In most of and/or trees the variables in the positive leaves are all different.

Distribution of numbers of positive leaves

Prob(tree of size *n* has *m* positive leaves)
$$\rightarrow_{n\to\infty} C_{m-1}(2m-1)(\frac{2}{\alpha})^m$$

Corollary

Most of trees have small number od positive leaves.

Corollary

In most of and/or trees the variables in the positive leaves are all different.

I ≡ →

Distribution of numbers of positive leaves

Prob(tree of size n has m positive leaves)
$$\rightarrow_{n\to\infty} C_{m-1}(2m-1)(\frac{2}{\alpha})^m$$

Corollary

Most of trees have small number od positive leaves.

Corollary

In most of and/or trees the variables in the positive leaves are all different.

IF a tree t has :

- *m* positive leaves
- all variables in positive leaves different

THEN

the table for I(t) contains hypercube of dimension n - m filled with 1.

Observatior

Big costant hypercubes are quite rare among boolean functions.

IF a tree t has :

- *m* positive leaves
- all variables in positive leaves different

THEN

the table for I(t) contains hypercube of dimension n - m filled with 1.

Observatior

Big costant hypercubes are quite rare among boolean functions.

IF a tree t has :

- *m* positive leaves
- all variables in positive leaves different

THEN

the table for I(t) contains hypercube of dimension n - m filled with 1.

Observation

Big costant hypercubes are quite rare among boolean functions.

The family

F_m - all the functions definable by trees with at most m positive leaves.

 $G_k = F_{\log k} \cap \{0,1\}^{\{0,1\}^k}$

THEN

 $P(G_{\log k}) \rightarrow_{k \rightarrow \infty} 1$

< ∃ →

э

The family

 F_m - all the functions definable by trees with at most m positive leaves.

Consider

$$G_k = F_{\log k} \cap \{0,1\}^{\{0,1\}^k}$$

THEN

$$P(G_{\log k}) \to_{k \to \infty} 1$$

Jakub Kozik Dark matter among and/or trees

э

∃ >

< ∃ →

The family

 F_m - all the functions definable by trees with at most m positive leaves.

Consider

$$G_k = F_{\log k} \cap \{0,1\}^{\{0,1\}^k}$$

THEN

$$P(G_{\log k}) \rightarrow_{k \rightarrow \infty} 1$$

э

< ∃ >

Functions from $F_{\log k}$ can not have maximal possible complexity.

Constribution from the functions with low complexity is negligible.

Functions from $F_{\log k}$ can not have maximal possible complexity.

Constribution from the functions with low complexity is negligible.

Corollary

There exist functions whose complexity is neither small nor heigh which are dominant for the distribution *P*.

What functions are they?

What complexity do they have?

Corollary

There exist functions whose complexity is neither small nor heigh which are dominant for the distribution *P*.

What functions are they?

What complexity do they have?

Corollary

There exist functions whose complexity is neither small nor heigh which are dominant for the distribution *P*.

What functions are they?

What complexity do they have?