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and/or trees

Var = {x1, x2, x3, . . . } - countable set of variables

Vark = {x1, . . . , xk}

Definition

Tk - set of and/or trees with k-variables is a minimal set such that:

1 xi ,¬xi ∈ Tk , for each xi ∈ Vark ,

2 (t1 ∧ t2), (t1 ∨ t2), for each t1, t2 ∈ Tk .

Tk(n) - the set of elements of Tk of size n.

Observation

Every t ∈ Tk defines some function I (t) : {0, 1}k → {0, 1}.

(I : Tk → {0, 1}{0,1}k )
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Distribution Pk [n]

Fix k , n ∈ N.

uTk (n) - uniform probability distribution on the (finite) set Tk(n).

FOR

f : 0, 1k → 0, 1

PUT
Pk [n](f ) = uTk (n)(I−1(f )).

Pk [n] is a probability distribution on {0, 1}{0,1}k .
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Theorem (Lefmann,Savicki 1997)

There exists distribution Pk on the set {0, 1}{0,1}k such that:

Pk [n](f )→n→∞ Pk(f )

for every f ∈ {0, 1}{0,1}k .

Equivalently

Pk(f ) = lim
n→∞

Card((I−1(f ) ∩ Tk(n)))

Card(Tk(n))
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Bounds for distribution Pk

Non constant f .

Upper bound - B. Chauvin, P. Flajolet, D. Gardy, and B.
Gittenberger 2004

Pk(f ) ≤ (1 + O(1/k))exp(−c
L(f )

k2
)

for some constant c > 0.

Lower bound - Lefmann,Savicki 1997

1
4(8k)−L(f )−1 ≤ Pk(f )

Improved lower bound - D. Gady, A. Woods 2005

4m(f )

(16k)L(f )+1
≤ Pk(f )

where m(f ) the number of minimal trees for f .
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D. Gardy, A. Woods conjecture

Focus on low complexities.

Theorem (J.K. 2007)

f - non-constant function. There exists positive constant Bf such
that

Pk(f ) ∼k Bf k−L(f )−1

Corollary

Lower bound is quite good for the functions with very low
complexity.
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What next? Big complexity ?

Uniform counting result

A fraction tending to 1 (as k →∞) of boolean functions in k
variables have tree complexity at least 2k/logk .

Guess

The set of functions with high complexity should have a big
measure Pk( ).
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But... Why the result for low complexities hold?

Definition (Negative pattern)

N → N ∨ N
∣∣∣� ∧ N

∣∣∣•
Definition (Positive pattern)

P → � ∨ P
∣∣∣P ∧ P

∣∣∣•
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Positive leaves number distribution.

Distribution of numbers of positive leaves

Prob( tree of size n has m positive leaves )→n→∞ Cm−1(2m−1)(
2

9
)m

Corollary

Most of trees have small number od positive leaves.

Corollary

In most of and/or trees the variables in the positive leaves are all
different.
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On the other hand...

IF a tree t has :

m positive leaves

all variables in positive leaves different

THEN

the table for I (t) contains hypercube of dimension n −m filled
with 1.

Observation

Big costant hypercubes are quite rare among boolean functions.
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The family

Fm - all the functions definable by trees with at most m positive
leaves.

Consider
Gk = Flog k ∩ {0, 1}{0,1}k

THEN
P(Glog k)→k→∞ 1
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Functions from Flog k can not have maximal possible complexity.

Constribution from the functions with low complexity is negligible.
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Corollary

There exist functions whose complexity is neither small nor heigh
which are dominant for the distributrion P.

What functions are they?

What complexity do they have?
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