Dark matter among and/or trees

Jakub Kozik

Theoretical Computer Science Jagiellonian University

6 June 2008
Versailles-Lyon-Chambery-Kraków Workshop on Computational
Logic and Applications

- $\operatorname{Var}=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ - countable set of variables
- $\operatorname{Var}_{k}=\left\{x_{1}, \ldots, x_{k}\right\}$

Definition

\mathcal{T}_{k} - set of and/or trees with k-variables is a minimal set such that:
$\mathcal{T}_{k}(n)$ - the set of elements of \mathcal{T}_{k} of size n.

Observation
Every $t \in \mathcal{T}_{k}$ defines some function $I(t):\{0,1\}^{k} \rightarrow\{0,1\}$
$\left(1: \mathcal{T}_{k} \rightarrow\{0,1\}^{\{0,1\}^{k}}\right)$

- $\operatorname{Var}=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ - countable set of variables
- $\operatorname{Var}_{k}=\left\{x_{1}, \ldots, x_{k}\right\}$

Definition

\mathcal{T}_{k} - set of and/or trees with k-variables is a minimal set such that:
$\mathcal{T}_{k}(n)$ - the set of elements of \mathcal{T}_{k} of size n.

Observation
Every $t \in \mathcal{T}_{k}$ defines some function $I(t):\{0,1\}^{k} \rightarrow\{0,1\}$
$\left(1: \mathcal{T}_{k} \rightarrow\{0,1\}^{\{0,1\}^{k}}\right)$

and/or trees

- $\operatorname{Var}=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ - countable set of variables
- $\operatorname{Var}_{k}=\left\{x_{1}, \ldots, x_{k}\right\}$

Definition

\mathcal{T}_{k} - set of and/or trees with k-variables is a minimal set such that:
(1) $x_{i}, \neg x_{i} \in \mathcal{T}_{k}$, for each $x_{i} \in \operatorname{Var}_{k}$,
(2) $\left(t_{1} \wedge t_{2}\right),\left(t_{1} \vee t 2\right)$, for each $t_{1}, t_{2} \in T_{k}$
$\mathcal{T}_{k}(n)$ - the set of elements of \mathcal{T}_{k} of size n.

Observation
Every $t \in \mathcal{T}_{k}$ defines some function $I(t):\{0,1\}^{k} \rightarrow\{0,1\}$

and/or trees

- $\operatorname{Var}=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ - countable set of variables
- $\operatorname{Var}_{k}=\left\{x_{1}, \ldots, x_{k}\right\}$

Definition

\mathcal{T}_{k} - set of and/or trees with k-variables is a minimal set such that:
(1) $x_{i}, \neg x_{i} \in \mathcal{T}_{k}$, for each $x_{i} \in \operatorname{Var}_{k}$, (2) $\left(t_{1} \wedge t_{2}\right),\left(t_{1} \vee t 2\right)$, for each $t_{1}, t_{2} \in \mathcal{T}_{k}$
$\mathcal{T}_{k}(n)$ - the set of elements of \mathcal{T}_{k} of size n.

Observation
Every $t \in \mathcal{T}_{k}$ defines some function $I(t):\{0,1\}^{k} \rightarrow\{0,1\}$

and/or trees

- $\operatorname{Var}=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ - countable set of variables
- $\operatorname{Var}_{k}=\left\{x_{1}, \ldots, x_{k}\right\}$

Definition

\mathcal{T}_{k} - set of and/or trees with k-variables is a minimal set such that:
(1) $x_{i}, \neg x_{i} \in \mathcal{T}_{k}$, for each $x_{i} \in \operatorname{Var}_{k}$,
(2) $\left(t_{1} \wedge t_{2}\right),\left(t_{1} \vee t 2\right)$, for each $t_{1}, t_{2} \in \mathcal{T}_{k}$.
$\mathcal{T}_{k}(n)$ - the set of elements of \mathcal{T}_{k} of size n.

Observation
Every $t \in \mathcal{T}_{k}$ defines some function $I(t):\{0,1\}^{k} \rightarrow\{0,1\}$

and/or trees

- $\operatorname{Var}=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ - countable set of variables
- $\operatorname{Var}_{k}=\left\{x_{1}, \ldots, x_{k}\right\}$

Definition

\mathcal{T}_{k} - set of and/or trees with k-variables is a minimal set such that:
(1) $x_{i}, \neg x_{i} \in \mathcal{T}_{k}$, for each $x_{i} \in \operatorname{Var}_{k}$,
(2) $\left(t_{1} \wedge t_{2}\right),\left(t_{1} \vee t 2\right)$, for each $t_{1}, t_{2} \in \mathcal{T}_{k}$.
$\mathcal{T}_{k}(n)$ - the set of elements of \mathcal{T}_{k} of size n.

Observation

Every $t \in \mathcal{T}_{k}$ defines some function $I(t):\{0,1\}^{k} \rightarrow\{0,1\}$.

$$
\left(I: \mathcal{T}_{k} \rightarrow\{0,1\}^{\{0,1\}^{k}}\right)
$$

Distribution $P_{k}[n]$

Fix $k, n \in \mathbb{N}$.
$u_{\mathcal{T}_{k}(n)}$ - uniform probability distribution on the (finite) set $\mathcal{T}_{k}(n)$.

FOR

$$
f: 0,1^{k} \rightarrow 0,1
$$

PUT

$$
P_{k}[n](f)=u_{\mathcal{T}_{k}(n)}\left(I^{-1}(f)\right) .
$$

$P_{k}[n]$ is a probability distribution on $\{0,1\}^{\{0,1\}^{k}}$

Distribution $P_{k}[n]$

Fix $k, n \in \mathbb{N}$.

$$
u_{\mathcal{T}_{k}(n)}-\text { uniform probability distribution on the (finite) set } \mathcal{T}_{k}(n)
$$

$$
P_{k}[n](f)=u_{\mathcal{T}_{k}(n)}\left(I^{-1}(f)\right) .
$$

$P_{k}[n]$ is a probability distribution on $\{0,1\}^{\{0,1\}^{k}}$

Distribution $P_{k}[n]$

Fix $k, n \in \mathbb{N}$.
$u_{\mathcal{T}_{k}(n)}$ - uniform probability distribution on the (finite) set $\mathcal{T}_{k}(n)$.

FOR

$$
f: 0,1^{k} \rightarrow 0,1
$$

PUT

$$
P_{k}[n](f)=u_{\mathcal{T}_{k}(n)}\left(I^{-1}(f)\right)
$$

$P_{k}[n]$ is a probability distribution on $\{0,1\}^{\{0,1\}^{k}}$

Distribution $P_{k}[n]$

Fix $k, n \in \mathbb{N}$.
$u_{\mathcal{T}_{k}(n)}$ - uniform probability distribution on the (finite) set $\mathcal{T}_{k}(n)$.

FOR

$$
f: 0,1^{k} \rightarrow 0,1
$$

PUT

$$
P_{k}[n](f)=u_{\mathcal{T}_{k}(n)}\left(I^{-1}(f)\right)
$$

$P_{k}[n]$ is a probability distribution on $\{0,1\}^{\{0,1\}^{k}}$.

Theorem (Lefmann,Savicki 1997)

There exists distribution P_{k} on the set $\{0,1\}^{\{0,1\}^{k}}$ such that:

$$
P_{k}[n](f) \rightarrow_{n \rightarrow \infty} P_{k}(f)
$$

for every $f \in\{0,1\}^{\{0,1\}^{k}}$.

Equivalently

Theorem (Lefmann,Savicki 1997)

There exists distribution P_{k} on the set $\{0,1\}^{\{0,1\}^{k}}$ such that:

$$
P_{k}[n](f) \rightarrow_{n \rightarrow \infty} P_{k}(f)
$$

for every $f \in\{0,1\}^{\{0,1\}^{k}}$.

Equivalently

$$
P_{k}(f)=\lim _{n \rightarrow \infty} \frac{\operatorname{Card}\left(\left(I^{-1}(f) \cap \mathcal{T}_{k}(n)\right)\right)}{\operatorname{Card}\left(\mathcal{T}_{k}(n)\right)}
$$

Bounds for distribution P_{k}

Non constant f.
Upper bound - B. Chauvin, P. Flajolet, D. Gardy, and B. Gittenberger 2004

$$
P_{k}(f) \leq(1+O(1 / k)) \exp \left(-c \frac{L(f)}{k^{2}}\right)
$$

for some constant $c>0$.
Lower bound - Lefmann,Savicki 1997

$$
\frac{1}{4}(8 k)^{-L(f)-1} \leq P_{k}(f)
$$

Improved lower bound - D. Gady, A. Woods 2005

$$
\frac{4 m(f)}{(16 k)^{L(f)+1}} \leq P_{k}(f)
$$

where $m(f)$ the number of minimal trees for f.

Bounds for distribution P_{k}

Non constant f.
Upper bound - B. Chauvin, P. Flajolet, D. Gardy, and B.
Gittenberger 2004

$$
P_{k}(f) \leq(1+O(1 / k)) \exp \left(-c \frac{L(f)}{k^{2}}\right)
$$

for some constant $c>0$.
Lower bound - Lefmann, Savicki 1997

Improved lower bound - D. Gady, A. Woods 2005

where $m(f)$ the number of minimal trees for f.

Bounds for distribution P_{k}

Non constant f.
Upper bound - B. Chauvin, P. Flajolet, D. Gardy, and B.
Gittenberger 2004

$$
P_{k}(f) \leq(1+O(1 / k)) \exp \left(-c \frac{L(f)}{k^{2}}\right)
$$

for some constant $c>0$.
Lower bound - Lefmann,Savicki 1997

$$
\frac{1}{4}(8 k)^{-L(f)-1} \leq P_{k}(f)
$$

Improved lower bound - D. Gady, A. Woods 2005

where $m(f)$ the number of minimal trees for f.

Bounds for distribution P_{k}

Non constant f.

Upper bound - B. Chauvin, P. Flajolet, D. Gardy, and B.
Gittenberger 2004

$$
P_{k}(f) \leq(1+O(1 / k)) \exp \left(-c \frac{L(f)}{k^{2}}\right)
$$

for some constant $c>0$.
Lower bound - Lefmann,Savicki 1997

$$
\frac{1}{4}(8 k)^{-L(f)-1} \leq P_{k}(f)
$$

Improved lower bound - D. Gady, A. Woods 2005

$$
\frac{4 m(f)}{(16 k)^{L(f)+1}} \leq P_{k}(f)
$$

where $m(f)$ the number of minimal trees for f.

D. Gardy, A. Woods conjecture

Focus on low complexities.

Theorem (J.K. 2007)
 f - non-constant function. There exists positive constant B_{f} such that

$$
P_{k}(f) \sim_{k} B_{f} k^{-L(f)-1}
$$

Corollary

Lower bound is quite good for the functions with very low complexity.

D. Gardy, A. Woods conjecture

Focus on low complexities.

Theorem (J.K. 2007)

f - non-constant function. There exists positive constant B_{f} such that

$$
P_{k}(f) \sim_{k} B_{f} k^{-L(f)-1}
$$

Corollary
Lower bound is quite good for the functions with very low
complexity.

D. Gardy, A. Woods conjecture

Focus on low complexities.

Theorem (J.K. 2007)

f - non-constant function. There exists positive constant B_{f} such that

$$
P_{k}(f) \sim_{k} B_{f} k^{-L(f)-1}
$$

Corollary
Lower bound is quite good for the functions with very low complexity.

What next? Big complexity ?

Uniform counting result

A fraction tending to 1 (as $k \rightarrow \infty$) of boolean functions in k variables have tree complexity at least $2^{k} / \log k$.

Guess

The set of functions with high complexity should have a big measure $P_{k}(-)$.

What next? Big complexity ?

Uniform counting result

A fraction tending to 1 (as $k \rightarrow \infty$) of boolean functions in k variables have tree complexity at least $2^{k} / \log k$.

Guess
The set of functions with high complexity should have a big measure $P_{k}(-)$

What next? Big complexity ?

Uniform counting result

A fraction tending to 1 (as $k \rightarrow \infty$) of boolean functions in k variables have tree complexity at least $2^{k} / \log k$.

Guess

The set of functions with high complexity should have a big measure $P_{k}(-)$.

But... Why the result for low complexities hold?

Definition (Negative pattern)

Definition (Positive pattern)

But... Why the result for low complexities hold?

Definition (Negative pattern)

$$
N \rightarrow N \vee N|\square \wedge N| \bullet
$$

Definition (Positive pattern)

But... Why the result for low complexities hold?

Definition (Negative pattern)

$$
N \rightarrow N \vee N|\square \wedge N| \bullet
$$

Definition (Positive pattern)

$$
P \rightarrow \square \vee P|P \wedge P| \bullet
$$

Positive leaves number distribution.

Distribution of numbers of positive leaves
$\operatorname{Prob}($ tree of size n has m positive leaves $) \rightarrow_{n \rightarrow \infty} C_{m-1}(2 m-1)\left(\frac{2}{9}\right)^{m}$
Corollary
Most of trees have small number od positive leaves.

Corollary
In most of and/or trees the variables in the positive leaves are all different.

Positive leaves number distribution.

Distribution of numbers of positive leaves

$\operatorname{Prob}($ tree of size n has m positive leaves $) \rightarrow_{n \rightarrow \infty} C_{m-1}(2 m-1)\left(\frac{2}{9}\right)^{m}$
Corollary
Most of trees have small number od positive leaves.

Corollary
In most of and/or trees the variables in the positive leaves are all
different.

Positive leaves number distribution.

Distribution of numbers of positive leaves

$\operatorname{Prob}($ tree of size n has m positive leaves $) \rightarrow_{n \rightarrow \infty} C_{m-1}(2 m-1)\left(\frac{2}{9}\right)^{m}$
Corollary
Most of trees have small number od positive leaves.
Corollary
In most of and/or trees the variables in the positive leaves are all different.

On the other hand...

IF a tree t has :

- m positive leaves
- all variables in positive leaves different

THEN

the table for $I(t)$ contains hypercube of dimension $n-m$ filled with 1.

Observation
Big costant hypercubes are quite rare among boolean functions.

On the other hand...

IF a tree t has :

- m positive leaves
- all variables in positive leaves different

THEN

the table for $I(t)$ contains hypercube of dimension $n-m$ filled with 1.

Observation
Big costant hypercubes are quite rare among boolean functions.

On the other hand...

IF a tree t has :

- m positive leaves
- all variables in positive leaves different

THEN

the table for $I(t)$ contains hypercube of dimension $n-m$ filled with 1.

Observation

Big costant hypercubes are quite rare among boolean functions.

The family
 F_{m} - all the functions definable by trees with at most m positive leaves.

$G_{k}=F_{\log k} \cap\{0,1\}^{\{0,1\}^{k}}$

The family

F_{m} - all the functions definable by trees with at most m positive leaves.

Consider

$$
G_{k}=F_{\log k} \cap\{0,1\}^{\{0,1\}^{k}}
$$

The family

F_{m} - all the functions definable by trees with at most m positive leaves.

Consider

$$
G_{k}=F_{\log k} \cap\{0,1\}^{\{0,1\}^{k}}
$$

THEN

$$
P\left(G_{\log k}\right) \rightarrow_{k \rightarrow \infty} 1
$$

Functions from $F_{\log k}$ can not have maximal possible complexity. Constribution from the functions with low complexity is negligible.

Functions from $F_{\log k}$ can not have maximal possible complexity.

Constribution from the functions with low complexity is negligible.

Corollary

There exist functions whose complexity is neither small nor heigh which are dominant for the distributrion P.

What functions are they?

Corollary

There exist functions whose complexity is neither small nor heigh which are dominant for the distributrion P.

What functions are they?

Corollary

There exist functions whose complexity is neither small nor heigh which are dominant for the distributrion P.

What functions are they?

What complexity do they have?

