Algebraic complexity and computational geometry

Hervé Fournier University of Versailles St-Quentin en Yvelines

> Joint work with Antoine Vigneron INRA Jouy-en-Josas

> > Algebraic complexity and computational geometry - p. 1

Outline

- Models of computation, lower bounds, complexity of Element Distintness.
- Ω(n log n) lower bound for computing the diameter of a 3D convex polytope.
- Hopcroft's problem and the diameter in higher dimension.

Models of computation, complexity of Element Distintness

Example of geometric problems

- Element Distinctness
 - Input: $x_1, \ldots, x_n \in \mathbb{R}$
 - Decide if the x_i are distinct
- Diameter in \mathbb{R}^d
 - Input: $p_1, \ldots, p_n \in \mathbb{R}^d$
 - Compute the euclidean diameter of $\{p_1, \ldots, p_n\}$
 - or Decide if the diameter is smaller than 1
- Hopcroft's Problem
 - Input: points p_1, \ldots, p_n and lines ℓ_1, \ldots, ℓ_n in \mathbb{R}^2
 - Decide if $\exists i, j$ such that $p_i \in \ell_j$

Model of computation: Real-RAM

- Real Random Access Machine.
- Each registers stores a *real* number.
- Access to registers in unit time.
- Arithmetic operation $(+, -, \times, /)$ in unit time.

Element Distinctness

- $O(n \log n)$ upper bound
 - Sort the input points x_1, \ldots, x_n
 - $x_{\sigma(1)} \leq \ldots \leq x_{\sigma(n)}$ is obtained in time $O(n \log n)$
 - Check if there exists *i* such that $x_{\sigma(i)} = x_{\sigma(i+1)}$
- Lower bound?

Structure of Element Distinctness

- Inputs of size n: we have to decide the complement of the union of all hyperplanes of equations x_i = x_j in Rⁿ
- Number of connected components:
 - $2^{\binom{n}{2}}$ sign conditions ($x_i < x_j$ or $x_i > x_j$ for each i < j)
 - Some sign conditions are not compatible, eg $x_1 < x_2$, $x_2 < x_3$ and $x_3 < x_2$
 - Compatible sign conditions correspond to permutations σ :

$$x_{\sigma(1)} < x_{\sigma(2)} < \ldots < x_{\sigma(n)}.$$

• There are exactly n! cells in the arrangement

Lower bound in a weak model

- Real-RAM with + and scalar multiplications $\cdot \lambda : x \mapsto \lambda x$
- Algorithm in time t can be unfolded into a family (T_n) of *Linear decision trees* of depth t(n)

Linear decision trees

- Dobkin et Lipton bound:
 - If S decided by a tree of depth d, then

$$\#CC(S) \leqslant 2^d$$

• Application to Element Distinctness: depth d_n for inputs of size n is bounded by

 $n\log n \approx \log(n!) \leqslant d_n$

• As a consequence, the complexity of Element Disctintness is $\Theta(n \log n)$ in the linear real-RAM model (and in the Linear decision tree model)

Linear decision trees

- Linear decision tree is a powerful model
 - Subset Sum: given (x_1, \ldots, x_n) decide if

$$\exists I \subseteq \{1, \dots, n\}, \sum_{i \in I} x_i = 1$$

- Can be solved by poly-depth linear decision trees
- Subset Sum is NP-complete over $(\mathbb{R}, +, <)$
- Can be solved by poly-time real (additive) algorithm iff P=NP (classical, non uniform)

Decision trees with arbitrary polynomials

- Too powerful to obtain any lower bound on Element Distinctness
 - Only one test:

$$\prod_{i < j} (x_i - x_j) = 0$$

 The model has to take into account the complexity of computing the tests

Algebraic computation tree

- Input: $\bar{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$.
- Output: YES or NO
- It is a tree with 3 types of nodes
 - Computation nodes:
 - a real constant,
 - some input number x_i , or
 - an operation {+, -, ×, /} performed on ancestors of the current node.
 - Branching nodes: compares with 0 the value obtained at a computation node that is an ancestor of the current node.
 - Leaves: YES or NO

Algebraic computation tree: example

Algebraic computation tree (ACT)

- We say that an ACT decides $S \subset \mathbb{R}^n$ if
 - $\forall (x_1, \ldots, x_n) \in S$, it reaches a leaf labeled YES, and
 - $\forall (x_1, \ldots, x_n) \notin S$, it reaches a leaf labeled NO.
- The ACT model is stronger than the real-RAM model.
- To get a lower bound on the worst-case running time of a real-RAM that decides S, it suffices to have a lower bound on the *depth* of all the ACTs that decide S

Theorem (Ben-Or). *Any ACT that decides S has depth*

 $\Omega(\log \# CC(S)).$

Complexity of Element Distinctness

• $\Theta(n \log n)$ in both real-RAM and ACT models

Lower bound for 3D convex polytopes

The diameter problem

- INPUT: a set P of n points in \mathbb{R}^d .
- OUTPUT: diam $(P) := \max\{d(x, y) \mid x, y \in P\}.$

The diameter problem

• diam
$$(P) = d(p, p')$$
.

Decision problem

- We will give lower bounds for the *decision problem* associated with the diameter problem.
- INPUT: a set P of n points in \mathbb{R}^d .
- OUTPUT:
 - YES if $\operatorname{diam}(P) < 1$
 - NO if $\operatorname{diam}(P) \ge 1$

The diameter problem

P lies between two parallel hyperplanes through *p* and *p*'. We say that (*p*, *p*') is an *antipodal pair*.

The diameter problem

• Any antipodal pair (and therefore any diametral pair) lies on the convex hull CH(P) of P.

Computing the diameter of a 2D-point set

- Compute the convex hull CH(P) of P.
 - $O(n \log n)$ time.
- Find all the antipodal pairs on CH(P).
 - There are at most *n* such pairs in non–degenerate cases.
 - O(n) time using the rotating calipers technique.
- Find the diametral pairs among the antipodal pairs.
 - O(n) time by brute force.
- Conclusion:
 - The diameter of a 2D-point set can be found in $O(n \log n)$ time
 - The diameter of a convex polygon can be found in O(n) time.

Diameter in \mathbb{R}^3 **and higher dimensions**

- Randomized $O(n \log n)$ time algorithm in \mathbb{R}^3 (Clarkson and Shor, 1988).
 - Randomized incremental construction of an intersection of balls and decimation.
- Deterministic O(n log n) time algorithm in ℝ³ (E. Ramos, 2000).
- In ℝ^d, algorithm in n^{2-2/([d/2]+1)} log^{O(1)} n
 (Matoušek and Schwartzkopf, 1995).

Lower bound on the diameter

- $\Omega(n \log n)$ lower bound in \mathbb{R}^2 .
 - Reduction from Set Disjointness. Given $A, B \subset \mathbb{R}$, decide if $A \cap B = \emptyset$.

Lower bound on the diameter

- $\Omega(n \log n)$ lower bound in \mathbb{R}^2 .
 - Reduction from Set Disjointness. Given $A, B \subset \mathbb{R}$, decide if $A \cap B = \emptyset$.

Diameter of a polytope

- The diameter of a convex polygon in \mathbb{R}^2 can be found in O(n) time.
- Can we compute the diameter of a convex 3D-polytope in linear time?

Problem statement

- We are given a convex 3-polytope P with n vertices.
- *P* is given by the coordinates of its vertices and its combinatorial structure:
 - All the inclusion relations between its vertices, edges and faces.
 - The cyclic ordering of the edges of each face.
- Remark: the combinatorial structure has size O(n).
- Problem: we want to decide whether diam(P) < 1.
- We show an $\Omega(n \log n)$ lower bound. Our approach:
 - We define a family of convex polytopes.
 - We show that the sub-family with diameter < 1 has $n^{\Omega(n)}$ connected components.
 - We apply Ben-Or's bound.

Polytopes $P(\beta)$

- The family of polytopes is parametrized by $\bar{\beta} \in \mathbb{R}^{2n-1}$.
- When n is fixed, only the 2n-1 blue points change with $\overline{\beta}$.

Polytopes $P(\bar{\beta})$

- The family of polytopes is parametrized by $\bar{\beta} \in \mathbb{R}^{2n-1}$.
- When n is fixed, only the 2n 1 blue points change with $\bar{\beta}$.

Polytopes $P(\bar{\beta})$

• Example where n = 3.

Properties of $P(\bar{\beta})$

- The combinatorial structure of $CH(A \cup B(\overline{\beta}) \cup C)$ is independent of $\overline{\beta}$.
- diam $(A \cup B(\overline{\beta}) \cup C) = dist(A, B(\overline{\beta})).$

Properties of $P(\bar{\beta})$

• The set

 $\{b_j(\beta) \mid \beta \in [-\alpha, \alpha] \text{ and } \operatorname{dist}(A, \{b_j(\beta)\}) < 1\}$

has at least 2n connected components.

Proof outline

• Definitions:

$$\mathcal{S}_n = \{ (\bar{a}, \bar{b}(\bar{\beta}), \bar{c}) \mid \bar{\beta} \in [-\alpha, \alpha]^{2n-1} \}$$

$$\mathcal{E}_n = \{ (\bar{a}, \bar{b}(\bar{\beta}), \bar{c}) \mid \bar{\beta} \in [-\alpha, \alpha]^{2n-1} \text{and } \operatorname{diam}(P(\bar{\beta})) < 1 \}$$

- Restriction to S_n is easy: the set S_n can be decided by an ACT with depth O(n).
- Deciding \mathcal{E}_n over \mathcal{S}_n is hard: \mathcal{E}_n has at least $(2n)^{2n-1}$ connected components. Apply Ben-Or's bound.

Randomized computation trees

- A RCT is a set of trees (T_i) with probability vector (p_i) $(p_i \ge 0, \sum_{i \in I} p_i = 1)$
- complexity = maximum depth of all T_i
- (T_i) decides S if
 - If $x \in S$: $\mathbb{P}[T_i \text{ accepts } x] > 2/3$
 - If $x \notin S$: $\mathbb{P}[T_i \text{ accepts } x] < 1/3$

Randomization can help

• Given
$$(x_1, \ldots, x_n, y_1, \ldots y_n)$$
, decide if

$$\begin{cases} y_1 = x_1 + \ldots + x_n \\ y_2 = \sum_{i < j} x_i x_j \\ \ldots \\ y_n = x_1 x_2 \ldots x_n \end{cases}$$

- $\Omega(n \log n)$ deterministic lower bound
- O(n) randomized algorithm: take $\xi \sim U(\{1, 2, \dots, 3n\})$ and check if

$$\xi^n + \sum_{i=0}^{n-1} (-1)^i y_{n-i} \xi^i = \prod_{i=1}^n (\xi - x_i).$$

Randomized computation trees

- Question: Ω(n log n) lower bound on diameter of 3D polytope in the RCT model?
- $\Omega(n \log n)$ randomized lower bound for Element Distinctness (Grigoriev)

Diameter is harder than Hopcroft's problem

Hopcroft's problem

- P is a set of n points in \mathbb{R}^2 .
- L is a set of n lines in \mathbb{R}^2 .
- Problem: decide whether $\exists (p, \ell) \in P \times L : p \in \ell$.

Hopcroft's problem

- P is a set of n points in \mathbb{R}^2 .
- L is a set of n lines in \mathbb{R}^2 .
- Problem: decide whether $\exists (p, \ell) \in P \times L : p \in \ell$.

Simple upper bound for Hopcroft's problem

- Naive algorithm in time $O(n^2)$.
- Improved upper bound:
 - Divide the *n* lines in \sqrt{n} packets of size \sqrt{n} ;
 - For each packet in turn, compute the arrangement of lines and look for point-line incidence. This takes time

$$(\sqrt{n})^2 \log \sqrt{n} = \Theta(n \log n).$$

• This gives an algorithm in time $O(n^{3/2} \log n)$.

Complexity of Hopcroft's problem

- An $o(n^{4/3} \log n)$ algorithm is known. (Matoušek).
 - Based on highly efficient point location techniques.
- No $O(n^{4/3})$ algorithm is known.
- Erickson gave an $\Omega(n^{4/3})$ lower bound in a *weaker model*.
 - Partitioning algorithms, based on a divide-and-conquer approach.

From Hopcroft's problem to Diameter

• We give a linear-time reduction from Hopcroft's problem to the diameter problem in \mathbb{R}^7 .

• Known upper bound: $n^{1.6} \log^{O(1)} n$.

 We first give a reduction to the *red-blue diameter* problem in R⁶: compute diam(E, F) when E and F are n-point sets in R⁶.

The reduction

•
$$\theta(x,y,z) := \frac{1}{x^2 + y^2 + z^2} (x^2, y^2, z^2, \sqrt{2}xy, \sqrt{2}yz, \sqrt{2}zx).$$

- Note that $\|\theta(x, y, z)\| = 1$.
- For $1 \leqslant i \leqslant n$

•
$$p_i = (x_i, y_i, 1)$$

• $\ell_i = (u_i, v_i, w_i)$ is the line $\ell_i : u_i x + v_i y + w_i = 0$.

• Let
$$p'_i := \theta(p_i)$$
 and $\ell'_j = \theta(\ell_j)$.

• We get

$$\begin{aligned} \|p'_{i} - \ell'_{j}\|^{2} &= \|p'_{i}\|^{2} + \|\ell'_{j}\|^{2} - 2\langle p'_{i}, \ell'_{j} \rangle \\ &= 2 - 2 \frac{\langle p_{i}, \ell_{j} \rangle^{2}}{\|p_{i}\|^{2} \|\ell_{j}\|^{2}} \end{aligned}$$

The reduction

- Note that $p_i \in \ell_j$ iff $\langle p_i, \ell_j \rangle = 0$.
- Thus, there exists i, j such that $p_i \in \ell_j$ if and only if $\operatorname{diam}(\theta(P), \theta(L)) = 2$.
- $\theta(P)$ and $\theta(L)$ are *n*-point sets in \mathbb{R}^6 .
- Similarly, we can get a reduction from Hopcroft's problem to the diameter problem in R⁷, using this linearization:

$$\tilde{\theta}(x,y,z) := \left(\frac{1}{x^2 + y^2 + z^2}(x^2, y^2, z^2, \sqrt{2}xy, \sqrt{2}yz, \sqrt{2}zx), \pm 1\right)$$

Related work

- Erickson gave reduction from Hopfcroft problem to other computational geometry problems.
 - Halfspace emptyness in \mathbb{R}^5 ,
 - Ray shooting in polyhedral terrains are harder than Hopcroft's problem.
- The red-blue diameter in \mathbb{R}^4 can be computed in $O(n^{4/3} \text{polylog } n)$ (Matoušek and Scharzkopf).
 - Question: is there a reduction from Hopcroft's problem to red-blue diameter in \mathbb{R}^4 ?