Algebraic complexity and computational geometry

Hervé Fournier
University of Versailles St-Quentin en Yvelines

Joint work with Antoine Vigneron
INRA Jouy-en-Josas

Outline

- Models of computation, lower bounds, complexity of Element Distintness.
- $\Omega(n \log n)$ lower bound for computing the diameter of a 3D convex polytope.
- Hopcroft's problem and the diameter in higher dimension.

Models of computation, complexity of Element Distintness

Example of geometric problems

- Element Distinctness
- Input: $x_{1}, \ldots, x_{n} \in \mathbb{R}$
- Decide if the x_{i} are distinct
- Diameter in \mathbb{R}^{d}
- Input: $p_{1}, \ldots, p_{n} \in \mathbb{R}^{d}$
- Compute the euclidean diameter of $\left\{p_{1}, \ldots, p_{n}\right\}$
- or Decide if the diameter is smaller than 1
- Hopcroft's Problem
- Input: points p_{1}, \ldots, p_{n} and lines $\ell_{1}, \ldots, \ell_{n}$ in \mathbb{R}^{2}
- Decide if $\exists i, j$ such that $p_{i} \in \ell_{j}$

Model of computation: Real-RAM

- Real Random Access Machine.
- Each registers stores a real number.
- Access to registers in unit time.
- Arithmetic operation $(+,-, \times, /)$ in unit time.

Element Distinctness

- $O(n \log n)$ upper bound
- Sort the input points x_{1}, \ldots, x_{n}
- $x_{\sigma(1)} \leqslant \ldots \leqslant x_{\sigma(n)}$ is obtained in time $O(n \log n)$
- Check if there exists i such that $x_{\sigma(i)}=x_{\sigma(i+1)}$
- Lower bound?

Structure of Element Distinctness

- Inputs of size n : we have to decide the complement of the union of all hyperplanes of equations $x_{i}=x_{j}$ in \mathbb{R}^{n}
- Number of connected components:
- $2^{\binom{n}{2}}$ sign conditions $\left(x_{i}<x_{j}\right.$ or $x_{i}>x_{j}$ for each $i<j$)
- Some sign conditions are not compatible, eg

$$
x_{1}<x_{2}, x_{2}<x_{3} \text { and } x_{3}<x_{2}
$$

- Compatible sign conditions correspond to permutations σ :

$$
x_{\sigma(1)}<x_{\sigma(2)}<\ldots<x_{\sigma(n)}
$$

- There are exactly n ! cells in the arrangement

Lower bound in a weak model

- Real-RAM with + and scalar multiplications $\cdot \lambda: x \mapsto \lambda x$
- Algorithm in time t can be unfolded into a family $\left(T_{n}\right)$ of Linear decision trees of depth $t(n)$

Linear decision trees

- Dobkin et Lipton bound:
- If S decided by a tree of depth d, then

$$
\# C C(S) \leqslant 2^{d}
$$

- Application to Element Distinctness: depth d_{n} for inputs of size n is bounded by

$$
n \log n \approx \log (n!) \leqslant d_{n}
$$

- As a consequence, the complexity of Element Disctintness is $\Theta(n \log n)$ in the linear real-RAM model (and in the Linear decision tree model)

Linear decision trees

- Linear decision tree is a powerful model
- Subset Sum: given $\left(x_{1}, \ldots, x_{n}\right)$ decide if

$$
\exists I \subseteq\{1, \ldots, n\}, \sum_{i \in I} x_{i}=1
$$

- Can be solved by poly-depth linear decision trees
- Subset Sum is NP-complete over $(\mathbb{R},+,<)$
- Can be solved by poly-time real (additive) algorithm iff $\mathrm{P}=\mathrm{NP}$ (classical, non uniform)

Decision trees with arbitrary polynomials

- Too powerful to obtain any lower bound on Element Distinctness
- Only one test:

$$
\prod_{i<j}\left(x_{i}-x_{j}\right)=0
$$

- The model has to take into account the complexity of computing the tests

Algebraic computation tree

- Input: $\bar{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.
- Output: YES or NO
- It is a tree with 3 types of nodes
- Computation nodes:
- a real constant,
- some input number x_{i}, or
- an operation $\{+,-, \times, /\}$ performed on ancestors of the current node.
- Branching nodes: compares with 0 the value obtained at a computation node that is an ancestor of the current node.
- Leaves: YES or NO

Algebraic computation tree: example

Algebraic computation tree (ACT)

- We say that an ACT decides $S \subset \mathbb{R}^{n}$ if
- $\forall\left(x_{1}, \ldots, x_{n}\right) \in S$, it reaches a leaf labeled YES, and
- $\forall\left(x_{1}, \ldots, x_{n}\right) \notin S$, it reaches a leaf labeled NO.
- The ACT model is stronger than the real-RAM model.
- To get a lower bound on the worst-case running time of a real-RAM that decides S, it suffices to have a lower bound on the depth of all the ACTs that decide S

Theorem (Ben-Or). Any ACT that decides S has depth

$$
\Omega(\log \# C C(S))
$$

Complexity of Element Distinctness

- $\Theta(n \log n)$ in both real-RAM and ACT models

Lower bound for 3D convex polytopes

The diameter problem

- INPUT: a set P of n points in \mathbb{R}^{d}.
- OUTPUT: $\operatorname{diam}(P):=\max \{\mathrm{d}(x, y) \mid x, y \in P\}$.

The diameter problem

- $\operatorname{diam}(P)=\mathrm{d}\left(p, p^{\prime}\right)$.

Decision problem

- We will give lower bounds for the decision problem associated with the diameter problem.
- INPUT: a set P of n points in \mathbb{R}^{d}.
- OUTPUT:
- YES if $\operatorname{diam}(P)<1$
- NO if $\operatorname{diam}(P) \geqslant 1$

The diameter problem

- P lies between two parallel hyperplanes through p and p^{\prime}. We say that $\left(p, p^{\prime}\right)$ is an antipodal pair.

The diameter problem

- Any antipodal pair (and therefore any diametral pair) lies on the convex hull $\mathrm{CH}(P)$ of P.

Finding the antipodal pairs

- The rotating calipers technique.

Finding the antipodal pairs

- The rotating calipers technique.

Finding the antipodal pairs

- The rotating calipers technique.

Finding the antipodal pairs

- The rotating calipers technique.

Finding the antipodal pairs

- The rotating calipers technique.

Computing the diameter of a 2D-point set

- Compute the convex hull $\mathrm{CH}(P)$ of P.
- $O(n \log n)$ time.
- Find all the antipodal pairs on $\mathrm{CH}(P)$.
- There are at most n such pairs in non-degenerate cases.
- $O(n)$ time using the rotating calipers technique.
- Find the diametral pairs among the antipodal pairs.
- $O(n)$ time by brute force.
- Conclusion:
- The diameter of a 2D-point set can be found in $O(n \log n)$ time
- The diameter of a convex polygon can be found in $O(n)$ time.

Diameter in \mathbb{R}^{3} and higher dimensions

- Randomized $O(n \log n)$ time algorithm in \mathbb{R}^{3} (Clarkson and Shor, 1988).
- Randomized incremental construction of an intersection of balls and decimation.
- Deterministic $O(n \log n)$ time algorithm in \mathbb{R}^{3} (E. Ramos, 2000).
- In \mathbb{R}^{d}, algorithm in $n^{2-2 /([d / 2\rceil+1)} \log { }^{O(1)} n$ (Matoušek and Schwartzkopf, 1995).

Lower bound on the diameter

- $\Omega(n \log n)$ lower bound in \mathbb{R}^{2}.
- Reduction from Set Disjointness.

Given $A, B \subset \mathbb{R}$, decide if $A \cap B=\emptyset$.

Lower bound on the diameter

- $\Omega(n \log n)$ lower bound in \mathbb{R}^{2}.
- Reduction from Set Disjointness.

Given $A, B \subset \mathbb{R}$, decide if $A \cap B=\emptyset$.

Diameter of a polytope

- The diameter of a convex polygon in \mathbb{R}^{2} can be found in $O(n)$ time.
- Can we compute the diameter of a convex $3 D$-polytope in linear time?

Problem statement

- We are given a convex 3-polytope P with n vertices.
- P is given by the coordinates of its vertices and its combinatorial structure:
- All the inclusion relations between its vertices, edges and faces.
- The cyclic ordering of the edges of each face.
- Remark: the combinatorial structure has size $O(n)$.
- Problem: we want to decide whether $\operatorname{diam}(P)<1$.
- We show an $\Omega(n \log n)$ lower bound. Our approach:
- We define a family of convex polytopes.
- We show that the sub-family with diameter <1 has $n^{\Omega(n)}$ connected components.
- We apply Ben-Or’s bound.

Polytopes $P(\bar{\beta})$

- The family of polytopes is parametrized by $\bar{\beta} \in \mathbb{R}^{2 n-1}$.
- When n is fixed, only the $2 n-1$ blue points change with $\bar{\beta}$.

Polytopes $P(\bar{\beta})$

- The family of polytopes is parametrized by $\bar{\beta} \in \mathbb{R}^{2 n-1}$.
- When n is fixed, only the $2 n-1$ blue points change with $\bar{\beta}$.

Polytopes $P(\bar{\beta})$

- Example where $n=3$.

Properties of $P(\bar{\beta})$

- The combinatorial structure of $\mathrm{CH}(A \cup B(\bar{\beta}) \cup C)$ is independent of $\bar{\beta}$.
- $\operatorname{diam}(A \cup B(\bar{\beta}) \cup C)=\operatorname{dist}(A, B(\bar{\beta}))$.

Properties of $P(\bar{\beta})$

- The set

$$
\left\{b_{j}(\beta) \mid \beta \in[-\alpha, \alpha] \text { and } \operatorname{dist}\left(A,\left\{b_{j}(\beta)\right\}\right)<1\right\}
$$

has at least $2 n$ connected components.

Proof outline

- Definitions:

$$
\begin{aligned}
\mathcal{S}_{n} & =\left\{(\bar{a}, \bar{b}(\bar{\beta}), \bar{c}) \mid \bar{\beta} \in[-\alpha, \alpha]^{2 n-1}\right\} \\
\mathcal{E}_{n} & =\left\{(\bar{a}, \bar{b}(\bar{\beta}), \bar{c}) \mid \bar{\beta} \in[-\alpha, \alpha]^{2 n-1} \text { and } \operatorname{diam}(P(\bar{\beta}))<1\right\}
\end{aligned}
$$

- Restriction to \mathcal{S}_{n} is easy: the set \mathcal{S}_{n} can be decided by an ACT with depth $O(n)$.
- Deciding \mathcal{E}_{n} over \mathcal{S}_{n} is hard: \mathcal{E}_{n} has at least $(2 n)^{2 n-1}$ connected components. Apply Ben-Or's bound.

Randomized computation trees

- A RCT is a set of trees $\left(T_{i}\right)$ with probability vector $\left(p_{i}\right)$ $\left(p_{i} \geqslant 0, \sum_{i \in I} p_{i}=1\right)$
- complexity $=$ maximum depth of all T_{i}
- $\left(T_{i}\right)$ decides S if
- If $x \in S: \mathbb{P}\left[T_{i}\right.$ accepts $\left.x\right]>2 / 3$
- If $x \notin S: \mathbb{P}\left[T_{i}\right.$ accepts $\left.x\right]<1 / 3$

Randomization can help

- Given $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots y_{n}\right)$, decide if

$$
\left\{\begin{array}{l}
y_{1}=x_{1}+\ldots+x_{n} \\
y_{2}=\sum_{i<j} x_{i} x_{j} \\
\ldots \\
y_{n}=x_{1} x_{2} \ldots x_{n}
\end{array}\right.
$$

- $\Omega(n \log n)$ deterministic lower bound
- $O(n)$ randomized algorithm: take $\xi \sim U(\{1,2, \ldots, 3 n\})$ and check if

$$
\xi^{n}+\sum_{i=0}^{n-1}(-1)^{i} y_{n-i} \xi^{i}=\prod_{i=1}^{n}\left(\xi-x_{i}\right)
$$

Randomized computation trees

- Question: $\Omega(n \log n)$ lower bound on diameter of 3D polytope in the RCT model?
- $\Omega(n \log n)$ randomized lower bound for Element Distinctness (Grigoriev)

Diameter is harder than Hopcroft's problem

Hopcroft's problem

- P is a set of n points in \mathbb{R}^{2}.
- L is a set of n lines in \mathbb{R}^{2}.
- Problem: decide whether $\exists(p, \ell) \in P \times L: p \in \ell$.

Hopcroft's problem

- P is a set of n points in \mathbb{R}^{2}.
- L is a set of n lines in \mathbb{R}^{2}.
- Problem: decide whether $\exists(p, \ell) \in P \times L: p \in \ell$.

Simple upper bound for Hopcroft's problem

- Naive algorithm in time $O\left(n^{2}\right)$.
- Improved upper bound:
- Divide the n lines in \sqrt{n} packets of size \sqrt{n};
- For each packet in turn, compute the arrangement of lines and look for point-line incidence. This takes time

$$
(\sqrt{n})^{2} \log \sqrt{n}=\Theta(n \log n)
$$

- This gives an algorithm in time $O\left(n^{3 / 2} \log n\right)$.

Complexity of Hopcroft's problem

- An $o\left(n^{4 / 3} \log n\right)$ algorithm is known. (Matoušek).
- Based on highly efficient point location techniques.
- No $O\left(n^{4 / 3}\right)$ algorithm is known.
- Erickson gave an $\Omega\left(n^{4 / 3}\right)$ lower bound in a weaker model.
- Partitioning algorithms, based on a divide-and-conquer approach.

From Hopcroft's problem to Diameter

- We give a linear-time reduction from Hopcroft's problem to the diameter problem in \mathbb{R}^{7}.
- Known upper bound: $n^{1.6} \log ^{O(1)} n$.
- We first give a reduction to the red-blue diameter problem in \mathbb{R}^{6} : compute $\operatorname{diam}(E, F)$ when E and F are n-point sets in \mathbb{R}^{6}.

The reduction

- $\theta(x, y, z):=\frac{1}{x^{2}+y^{2}+z^{2}}\left(x^{2}, y^{2}, z^{2}, \sqrt{2} x y, \sqrt{2} y z, \sqrt{2} z x\right)$.
- Note that $\|\theta(x, y, z)\|=1$.
- For $1 \leqslant i \leqslant n$
- $p_{i}=\left(x_{i}, y_{i}, 1\right)$
- $\ell_{i}=\left(u_{i}, v_{i}, w_{i}\right)$ is the line $\ell_{i}: u_{i} x+v_{i} y+w_{i}=0$.
- Let $p_{i}^{\prime}:=\theta\left(p_{i}\right)$ and $\ell_{j}^{\prime}=\theta\left(\ell_{j}\right)$.
- We get

$$
\begin{aligned}
\left\|p_{i}^{\prime}-\ell_{j}^{\prime}\right\|^{2} & =\left\|p_{i}^{\prime}\right\|^{2}+\left\|\ell_{j}^{\prime}\right\|^{2}-2\left\langle p_{i}^{\prime}, \ell_{j}^{\prime}\right\rangle \\
& =2-2 \frac{\left\langle p_{i}, \ell_{j}\right\rangle^{2}}{\left\|p_{i}\right\|^{2}\left\|\ell_{j}\right\|^{2}}
\end{aligned}
$$

The reduction

- Note that $p_{i} \in \ell_{j}$ iff $\left\langle p_{i}, \ell_{j}\right\rangle=0$.
- Thus, there exists i, j such that $p_{i} \in \ell_{j}$ if and only if $\operatorname{diam}(\theta(P), \theta(L))=2$.
- $\theta(P)$ and $\theta(L)$ are n-point sets in \mathbb{R}^{6}.
- Similarly, we can get a reduction from Hopcroft's problem to the diameter problem in \mathbb{R}^{7}, using this linearization:

$$
\tilde{\theta}(x, y, z):=\left(\frac{1}{x^{2}+y^{2}+z^{2}}\left(x^{2}, y^{2}, z^{2}, \sqrt{2} x y, \sqrt{2} y z, \sqrt{2} z x\right), \pm 1\right)
$$

Related work

- Erickson gave reduction from Hopfcroft problem to other computational geometry problems.
- Halfspace emptyness in \mathbb{R}^{5},
- Ray shooting in polyhedral terrains are harder than Hopcroft's problem.
- The red-blue diameter in \mathbb{R}^{4} can be computed in $O\left(n^{4 / 3}\right.$ polylog $\left.n\right)$ (Matoušek and Scharzkopf).
- Question: is there a reduction from Hopcroft's problem to red-blue diameter in \mathbb{R}^{4} ?

