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Outline

Models of computation, lower bounds, complexity of
Element Distintness.

Ω(n log n) lower bound for computing the diameter of a
3D convex polytope.

Hopcroft’s problem and the diameter in higher
dimension.
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Models of computation, complexity
of Element Distintness
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Example of geometric problems

Element Distinctness
Input: x1, . . . , xn ∈ R

Decide if the xi are distinct

Diameter in R
d

Input: p1, . . . , pn ∈ R
d

Compute the euclidean diameter of {p1, . . . , pn}
or Decide if the diameter is smaller than 1

Hopcroft’s Problem
Input: points p1, . . . , pn and lines ℓ1, . . . , ℓn in R

2

Decide if ∃i, j such that pi ∈ ℓj
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Model of computation: Real-RAM

Real Random Access Machine.

Each registers stores a real number.

Access to registers in unit time.

Arithmetic operation (+,−,×, /) in unit time.
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Element Distinctness

O(n log n) upper bound
Sort the input points x1, . . . , xn

xσ(1) 6 . . . 6 xσ(n) is obtained in time O(n log n)

Check if there exists i such that xσ(i) = xσ(i+1)

Lower bound?
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Structure of Element Distinctness

Inputs of size n: we have to decide the complement of
the union of all hyperplanes of equations xi = xj in R

n

Number of connected components:

2(
n

2
) sign conditions (xi < xj or xi > xj for each i < j)

Some sign conditions are not compatible, eg
x1 < x2, x2 < x3 and x3 < x2

Compatible sign conditions correspond to
permutations σ:

xσ(1) < xσ(2) < . . . < xσ(n).

There are exactly n! cells in the arrangement
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Lower bound in a weak model

Real-RAM with + and scalar multiplications ·λ : x 7→ λx

Algorithm in time t can be unfolded into a family (Tn) of
Linear decision trees of depth t(n)

yesno

no yes no yes

YY N N

x1 + 2x3 < 0 2x1 + x3 + 1 < 0

2x1 + 3x2 + x3 < 0
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Linear decision trees

Dobkin et Lipton bound:
If S decided by a tree of depth d, then

#CC(S) 6 2d

Application to Element Distinctness: depth dn for
inputs of size n is bounded by

n log n ≈ log(n!) 6 dn

As a consequence, the complexity of Element
Disctintness is Θ(n log n) in the linear real-RAM
model (and in the Linear decision tree model)
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Linear decision trees

Linear decision tree is a powerful model
Subset Sum: given (x1, . . . , xn) decide if

∃I ⊆ {1, . . . , n},
∑

i∈I

xi = 1

Can be solved by poly-depth linear decision trees
Subset Sum is NP-complete over (R,+, <)

Can be solved by poly-time real (additive) algorithm
iff P=NP (classical, non uniform)
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Decision trees with arbitrary polynomials

Too powerful to obtain any lower bound on Element
Distinctness

Only one test:
∏

i<j

(xi − xj) = 0

The model has to take into account the complexity of
computing the tests
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Algebraic computation tree

Input: x̄ = (x1, x2, . . . , xn) ∈ R
n.

Output: YES or NO

It is a tree with 3 types of nodes
Computation nodes:

a real constant,
some input number xi, or
an operation {+,−,×, /} performed on
ancestors of the current node.

Branching nodes: compares with 0 the value
obtained at a computation node that is an ancestor
of the current node.
Leaves: YES or NO
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Algebraic computation tree: example
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Algebraic computation tree (ACT)

We say that an ACT decides S ⊂ R
n if

∀(x1, . . . , xn) ∈ S, it reaches a leaf labeled YES, and
∀(x1, . . . , xn) /∈ S, it reaches a leaf labeled NO.

The ACT model is stronger than the real–RAM model.

To get a lower bound on the worst-case running time of
a real-RAM that decides S, it suffices to have a lower
bound on the depth of all the ACTs that decide S

Theorem (Ben-Or). Any ACT that decides S has depth

Ω(log #CC(S)).
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Complexity of Element Distinctness

Θ(n log n) in both real-RAM and ACT models
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Lower bound for 3D convex
polytopes
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The diameter problem

P

INPUT: a set P of n points in R
d.

OUTPUT: diam(P ) := max{d(x, y) | x, y ∈ P}.
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The diameter problem

p′

p

P

diam(P ) = d(p, p′).
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Decision problem

We will give lower bounds for the decision problem
associated with the diameter problem.

INPUT: a set P of n points in R
d.

OUTPUT:
YES if diam(P ) < 1

NO if diam(P ) > 1
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The diameter problem

P

p′

p

ℓ ℓ′

P lies between two parallel hyperplanes through p and
p′. We say that (p, p′) is an antipodal pair .
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The diameter problem

P

p′

p

ℓ ℓ′

Any antipodal pair (and therefore any diametral pair)
lies on the convex hull CH(P ) of P .
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Finding the antipodal pairs

The rotating calipers technique.

ℓ

ℓ′
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Finding the antipodal pairs

The rotating calipers technique.

ℓ′

ℓ
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Finding the antipodal pairs

The rotating calipers technique.
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Finding the antipodal pairs

The rotating calipers technique.
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Finding the antipodal pairs

The rotating calipers technique.
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Computing the diameter of a 2D-point set

Compute the convex hull CH(P ) of P .
O(n log n) time.

Find all the antipodal pairs on CH(P ).
There are at most n such pairs in non–degenerate
cases.
O(n) time using the rotating calipers technique.

Find the diametral pairs among the antipodal pairs.
O(n) time by brute force.

Conclusion:
The diameter of a 2D-point set can be found in
O(n log n) time
The diameter of a convex polygon can be found in
O(n) time.
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Diameter in R
3 and higher dimensions

Randomized O(n log n) time algorithm in R
3

(Clarkson and Shor, 1988).
Randomized incremental construction of an
intersection of balls and decimation.

Deterministic O(n log n) time algorithm in R
3

(E. Ramos, 2000).

In R
d, algorithm in n2−2/(⌈d/2⌉+1) logO(1) n

(Matoušek and Schwartzkopf, 1995).
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Lower bound on the diameter

Ω(n log n) lower bound in R
2.

Reduction from Set Disjointness.
Given A,B ⊂ R, decide if A ∩ B = ∅.

Ã

B̃
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Lower bound on the diameter

Ω(n log n) lower bound in R
2.

Reduction from Set Disjointness.
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Ã

B̃
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Diameter of a polytope

The diameter of a convex polygon in R
2 can be found

in O(n) time.

Can we compute the diameter of a convex 3D-polytope
in linear time?
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Problem statement

We are given a convex 3-polytope P with n vertices.

P is given by the coordinates of its vertices and its
combinatorial structure:

All the inclusion relations between its vertices,
edges and faces.
The cyclic ordering of the edges of each face.

Remark: the combinatorial structure has size O(n).

Problem: we want to decide whether diam(P ) < 1.

We show an Ω(n log n) lower bound. Our approach:
We define a family of convex polytopes.
We show that the sub-family with diameter < 1 has
nΩ(n) connected components.
We apply Ben-Or’s bound.
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Polytopes P (β̄)

The family of polytopes is parametrized by β̄ ∈ R
2n−1.

When n is fixed, only the 2n − 1 blue points change
with β̄.
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Polytopes P (β̄)
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Polytopes P (β̄)

Example where n = 3.
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Properties of P (β̄)

The combinatorial structure of CH(A ∪ B(β̄) ∪ C) is
independent of β̄.

diam(A ∪ B(β̄) ∪ C) = dist(A,B(β̄)).
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Properties of P (β̄)

The set

{bj(β) | β ∈ [−α, α] and dist(A, {bj(β)}) < 1}

has at least 2n connected components.

a
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a
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Proof outline

Definitions:

Sn = {(ā, b̄(β̄), c̄) | β̄ ∈ [−α, α]2n−1}
En = {(ā, b̄(β̄), c̄) | β̄ ∈ [−α, α]2n−1and diam(P (β̄)) < 1}

Restriction to Sn is easy: the set Sn can be decided by
an ACT with depth O(n).

Deciding En over Sn is hard: En has at least (2n)2n−1

connected components. Apply Ben-Or’s bound.
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Randomized computation trees

A RCT is a set of trees (Ti) with probability vector (pi)
(pi > 0,

∑

i∈I pi = 1)

complexity = maximum depth of all Ti

(Ti) decides S if
If x ∈ S: P[Ti accepts x] > 2/3

If x 6∈ S: P[Ti accepts x] < 1/3
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Randomization can help

Given (x1, . . . , xn, y1, . . . yn), decide if



















y1 = x1 + . . . + xn

y2 =
∑

i<j xixj

. . .

yn = x1x2 . . . xn

Ω(n log n) deterministic lower bound

O(n) randomized algorithm: take ξ ∼ U({1, 2, . . . , 3n})
and check if

ξn +

n−1
∑

i=0

(−1)iyn−iξ
i =

n
∏

i=1

(ξ − xi).
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Randomized computation trees

Question: Ω(n log n) lower bound on diameter of 3D
polytope in the RCT model?

Ω(n log n) randomized lower bound for Element
Distinctness (Grigoriev)
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Diameter is harder than Hopcroft’s
problem
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Hopcroft’s problem

P is a set of n points in R
2.

L is a set of n lines in R
2.

Problem: decide whether ∃(p, ℓ) ∈ P × L : p ∈ ℓ.
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Hopcroft’s problem
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Simple upper bound for Hopcroft’s problem

Naive algorithm in time O(n2).

Improved upper bound:
Divide the n lines in

√
n packets of size

√
n;

For each packet in turn, compute the arrangement
of lines and look for point-line incidence. This takes
time

(
√

n)2 log
√

n = Θ(n log n).

This gives an algorithm in time O(n3/2 log n).
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Complexity of Hopcroft’s problem

An o(n4/3 log n) algorithm is known. (Matoušek).
Based on highly efficient point location techniques.

No O(n4/3) algorithm is known.

Erickson gave an Ω(n4/3) lower bound in a weaker
model.

Partitioning algorithms, based on a
divide-and-conquer approach.
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From Hopcroft’s problem to Diameter

We give a linear-time reduction from Hopcroft’s
problem to the diameter problem in R

7.

Known upper bound: n1.6 logO(1) n.

We first give a reduction to the red-blue diameter
problem in R

6: compute diam(E,F ) when E and F are
n-point sets in R

6.
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The reduction

θ(x, y, z) :=
1

x2 + y2 + z2
(x2, y2, z2,

√
2xy,

√
2yz,

√
2zx).

Note that ‖θ(x, y, z)‖ = 1.

For 1 6 i 6 n

pi = (xi, yi, 1)

ℓi = (ui, vi, wi) is the line ℓi : uix + viy + wi = 0.

Let p′i := θ(pi) and ℓ′j = θ(ℓj).

We get

‖p′i − ℓ′j‖2 = ‖p′i‖2 + ‖ℓ′j‖2 − 2〈p′i, ℓ′j〉

= 2 − 2
〈pi, ℓj〉2

‖pi‖2‖ℓj‖2
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The reduction

Note that pi ∈ ℓj iff 〈pi, ℓj〉 = 0.

Thus, there exists i, j such that pi ∈ ℓj if and only if
diam(θ(P ), θ(L)) = 2.

θ(P ) and θ(L) are n-point sets in R
6.

Similarly, we can get a reduction from Hopcroft’s
problem to the diameter problem in R

7, using this
linearization:

θ̃(x, y, z) :=

(

1

x2 + y2 + z2
(x2, y2, z2,

√
2xy,

√
2yz,

√
2zx),±1

)
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Related work

Erickson gave reduction from Hopfcroft problem to
other computational geometry problems.

Halfspace emptyness in R
5,

Ray shooting in polyhedral terrains
are harder than Hopcroft’s problem.

The red-blue diameter in R
4 can be computed in

O(n4/3polylog n) (Matoušek and Scharzkopf).
Question: is there a reduction from Hopcroft’s
problem to red-blue diameter in R

4?
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