# Object Complexity - Examples and Tools

# Edward Szczypka (TCS UJ)

6 June 2008

Edward Szczypka (TCS UJ) Object Complexity - Examples and Tools

イロト 不得下 イヨト イヨト

æ

# Definition (Algorithm Complexity)

Computer resources needed to run the algorithm.

- time complexity how many steps does it take,
- @ memory complexity how much memory does it take.

A (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (

# Definition (Algorithm Complexity)

Computer resources needed to run the algorithm.

- time complexity how many steps does it take,
- 2 memory complexity how much memory does it take.

Certainly, the required resources strictly depend on the complexity of input data.

## How can we define an input complexity function?

## usually defined as a number of isolated parts,

would be nice to get the same input complexity for the data with similar time and size algorithm complexity.

< 回 > < 三 > < 三 >

## How can we define an input complexity function?

- usually defined as a number of isolated parts,
- would be nice to get the same input complexity for the data with similar time and size algorithm complexity.

・ 同 ト ・ ヨ ト ・ ヨ ト

# Randomization Algorithms

# Las Vegas and Monte Carlo Algorithms

Most problems are difficult (a lot of resources).

Solution - algorithm that

- works fast on almost all inputs (Las Vegas algorithm),
- gives correct answers for almost all cases (Monte Carlo algorithm).



# Las Vegas and Monte Carlo Algorithms

Most problems are difficult (a lot of resources).

Solution - algorithm that

- works fast on *almost all* inputs (Las Vegas algorithm),
- gives correct answers for *almost all* cases (Monte Carlo algorithm).



# Las Vegas and Monte Carlo Algorithms

Most problems are difficult (a lot of resources).

Solution - algorithm that

- works fast on *almost all* inputs (Las Vegas algorithm),
- gives correct answers for *almost all* cases (Monte Carlo algorithm).



# Las Vegas and Monte Carlo Algorithms

Most problems are difficult (a lot of resources).

Solution - algorithm that

- works fast on *almost all* inputs (Las Vegas algorithm),
- gives correct answers for *almost all* cases (Monte Carlo algorithm).



# Definition (Object Complexity)

 $f:T\to\mathbb{N}$  is an input(object) complexity function for the set T of objects with the order  $\prec$  of such objects if

• 
$$f(\mu) < f(\tau)$$
, for  $\mu \prec \tau$ ,

2 
$$f^{-1}(i)$$
 finite,

3 
$$\liminf_{i\to\infty,i\in f(T)} \left\| f^{-1}(i) \right\| = \infty.$$

#### Definition (Complexity Measure)

for  $A \subseteq T$  :

$$\mu_f(A) = \lim_{i \to \infty, i \in f(T)} \frac{\left\| A \cap f^{-1}(i) \right\|}{\|f^{-1}(i)\|}$$

(D) (A) (A) (A) (A)

臣

# Definition (Object Complexity)

 $f:T\to\mathbb{N}$  is an input(object) complexity function for the set T of objects with the order  $\prec$  of such objects if

• 
$$f(\mu) < f(\tau)$$
, for  $\mu \prec \tau$ ,

2 
$$f^{-1}(i)$$
 finite,

3 
$$\liminf_{i\to\infty,i\in f(T)} \left\| f^{-1}(i) \right\| = \infty.$$

### Definition (Complexity Measure)

for  $A \subseteq T$  :

$$\mu_f(A) = \lim_{i \to \infty, i \in f(T)} \frac{\left\| A \cap f^{-1}(i) \right\|}{\|f^{-1}(i)\|}$$

< 回 > < 三 > < 三 >

# Definition (Almost Every)

For a given property  $P, \ensuremath{\mathsf{we}}$  say that almost every element of T has this property if

$$\mu_f \left( \{ t \in T : t \text{ satisfies } P \} \right) = 1.$$

・ロト ・聞ト ・ヨト ・ヨト

臣

# Example (Object Complexity Functions on Trees)

- the number of leaves,
- the number of nodes,
- the number of branches,

and

• the hight of tree.

・ロト ・聞ト ・ヨト ・ヨト

臣

# Example (Object Complexity Functions on Trees)

- the number of leaves,
- the number of nodes,
- the number of branches,

# and

• the hight of tree.

(周) (三) (三)

# Similarity and Equivalence

## Definition (Similarity of Object Complexity Functions)

 $f, g: T \to \mathbb{N}$  are similar  $(f \sim g)$ if and only if  $\mu_f(A) = \mu_g(A)$  for any  $A \subseteq T$  when  $\mu_f(A)$  and  $\mu_g(A)$  exist.

#### Definition (Equivalence of Object Complexity Functions)

```
f, g: T \to \mathbb{N} are equivalent (f \approx g)
if and only if
f and g are similar
and in addition \mu_f(A) i \mu_g(A) simultaneously exist or do not exist
```

#### Note

Equivalence  $\approx$  is an equivalence relation, Similarity  $\sim$  usually not.

イロト イポト イヨト イヨト

# Similarity and Equivalence

## Definition (Similarity of Object Complexity Functions)

 $f, g: T \to \mathbb{N}$  are similar  $(f \sim g)$ if and only if  $\mu_f(A) = \mu_g(A)$  for any  $A \subseteq T$  when  $\mu_f(A)$  and  $\mu_g(A)$  exist.

### Definition (Equivalence of Object Complexity Functions)

 $f, g: T \to \mathbb{N}$  are equivalent  $(f \approx g)$ if and only if f and g are similar and in addition  $\mu_f(A)$  i  $\mu_g(A)$  simultaneously exist or do not exist

#### Note

Equivalence  $\approx$  is an equivalence relation, Similarity  $\sim$  usually not.

э

# Similarity and Equivalence

## Definition (Similarity of Object Complexity Functions)

 $f, g: T \to \mathbb{N}$  are similar  $(f \sim g)$ if and only if  $\mu_f(A) = \mu_g(A)$  for any  $A \subseteq T$  when  $\mu_f(A)$  and  $\mu_g(A)$  exist.

## Definition (Equivalence of Object Complexity Functions)

 $f, g: T \to \mathbb{N}$  are equivalent  $(f \approx g)$ if and only if f and g are similar and in addition  $\mu_f(A)$  i  $\mu_g(A)$  simultaneously exist or do not exist

#### Note

Equivalence  $\approx$  is an equivalence relation, Similarity  $\sim$  usually not.

・ロト ・聞ト ・ヨト ・ヨト

Э



・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

3

# Definition (Code)

Code is an object complexity function with at most one element in every slice.

#### Similarity and code

- every object complexity function is similar to code,
- 2 but lack of transitivity.



(ロ) (同) (三) (三)

# Definition (Code)

Code is an object complexity function with at most one element in every slice.

#### Similarity and code

- every object complexity function is similar to code,
- 2 but lack of transitivity.



![](_page_20_Figure_1.jpeg)

▲冊♪ ▲屋♪ ▲屋♪

#### Inclusion vs Similarity

If each slice of f is included in exactly one slice g (with possibly finitely many exceptions) then f and g are similar  $(f \sim g)$ .

< 回 > < 三 > < 三 >

#### Inclusion vs Similarity

If each slice of f is included in exactly one slice g (with possibly finitely many exceptions) then f and g are similar  $(f \sim g)$ .

・ 同 ト ・ ヨ ト ・ ヨ ト

#### Inclusion vs Similarity

If each slice of f is included in exactly one slice g (with possibly finitely many exceptions) then f and g are similar  $(f \sim g)$ .

![](_page_23_Figure_3.jpeg)

▲□ ▶ ▲ □ ▶ ▲ □ ▶

### Natural Numbers

There is only one surjective object complexity function for  $(\mathbb{N},<),$  i.e. f(n)=n.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

# Examples of Object Complexity Functions

# Definition (Words)

Words

$$\Sigma^* = \bigcup_{n \in \omega} \Sigma^n$$

#### Order

 $\begin{aligned} & u \leq v \text{ wtw} \\ & xuy = v \text{ for some } x, y \in \Sigma^*. \end{aligned}$ 

#### Complexity of $\{a, b\}^*$

Any function  $f_k(u)$  with

 $f_k(u) = (\text{the number of } a \text{ in } u) + k \cdot (\text{the number of } b \text{ in } u)$ 

is an object complexity function.

イロト 不得下 イヨト イヨト

æ

# Definition (Words)

Words

$$\Sigma^* = \bigcup_{n \in \omega} \Sigma^n$$

#### Order

$$\label{eq:started} \begin{split} u &\leq v \text{ wtw} \\ xuy &= v \text{ for some } x, y \in \Sigma^*. \end{split}$$

# Complexity of $\{a, b\}^*$

Any function  $f_k(u)$  with

 $f_k(u) = (\text{the number of } a \text{ in } u) + k \cdot (\text{the number of } b \text{ in } u)$ 

is an object complexity function.

・ロト ・回ト ・ヨト ・ヨト

# Examples of Object Complexity Functions

# Definition (Binary Trees)

Point  $\cdot$  is a tree. If  $s_1$  and  $s_2$  are trees then  $t = s_1^{\wedge} s_2$  is a tree.  $s \leq t$  if and only if

 $\boldsymbol{s}$  is a subtree of  $\boldsymbol{t}$ 

![](_page_27_Figure_4.jpeg)

イロト イポト イヨト イヨト

臣

#### Object Complexity on Trees

• The width of tree  $f_c$  (the number of leaves)  $f_c(\cdot) = 1, f_c(s_1^{\wedge}s_2) = f_c(s_1) + f_c(s_2),$ 

2 The height of tree  $f_h$  $f_h(\cdot) = 1, f_h(s_1 \land s_2) = \max\{f_c(s_1), f_c(s_2)\} + 1,$ 

# Examples of Object Complexity Functions

# Definition (Binary Trees)

Point  $\cdot$  is a tree. If  $s_1$  and  $s_2$  are trees then  $t = s_1^{\wedge} s_2$  is a tree.  $s \leq t$  if and only if

![](_page_28_Figure_3.jpeg)

![](_page_28_Figure_4.jpeg)

Э

## Object Complexity on Trees

• The width of tree  $f_c$  (the number of leaves)  $f_c(\cdot) = 1, f_c(s_1 \land s_2) = f_c(s_1) + f_c(s_2),$ 

2 The height of tree 
$$f_h$$
  
 $f_h(\cdot) = 1, f_h(s_1 \land s_2) = \max\{f_c(s_1), f_c(s_2)\} + 1,$ 

# Theorem (The smallest object complexity function on trees)

The function  $f_h$  is the smallest function on binary trees, i.e.  $f_h(t) \leq f(t)$ ,

The function  $f_h$  has the biggest slices

$$\|f_h^{-1}(1,\ldots,n)\| \ge \|f^{-1}(1,\ldots,n)\|$$
, for any  $f$   
 $\|f_h^{-1}(1,\ldots,n)\| = 2^{\theta(2^n)}$ 

・ロト ・ 日 ・ ・ 目 ・ ・ 日 ・ ・

æ

# Theorem (The smallest object complexity function on trees)

The function  $f_h$  is the smallest function on binary trees, i.e.  $f_h(t) \leq f(t)$ ,

### The function $f_h$ has the biggest slices

$$\|f_h^{-1}(1,\ldots,n)\| \ge \|f^{-1}(1,\ldots,n)\|$$
, for any  $f$   
 $\|f_h^{-1}(1,\ldots,n)\| = 2^{\theta(2^n)}$ 

・ロト ・四ト ・ヨト ・ヨト

э

- Codes have small slices but they are not symmetric,
- 2 Function  $f_h$  is symmetric, i.e.  $f_h(s_1 \land s_2) = f_h(s_2 \land s_1)$
- ③ For  $\gamma > 0$  exists symmetric object complexity function f, such that  $\|f^{-1}(i)\| = O(i^{\gamma})$ ,
- For any symmetric complexity function f exist  $\alpha, \beta > 0$  such that  $||f^{-1}(i)|| \ge \alpha \cdot i^{\beta}$ .

- Codes have small slices but they are not symmetric,
- 2 Function  $f_h$  is symmetric, i.e.  $f_h(s_1^{\wedge}s_2) = f_h(s_2^{\wedge}s_1)$ ,
- (a) For  $\gamma > 0$  exists symmetric object complexity function f, such that  $\|f^{-1}(i)\| = O(i^{\gamma})$ ,
- For any symmetric complexity function f exist  $\alpha, \beta > 0$  such that  $||f^{-1}(i)|| \ge \alpha \cdot i^{\beta}$ .

- Codes have small slices but they are not symmetric,
- 2 Function  $f_h$  is symmetric, i.e.  $f_h(s_1^{\wedge}s_2) = f_h(s_2^{\wedge}s_1)$ ,
- For  $\gamma > 0$  exists symmetric object complexity function f, such that  $\|f^{-1}(i)\| = O(i^{\gamma})$ ,

For any symmetric complexity function f exist α, β > 0 such that ||f<sup>-1</sup>(i)|| ≥ α · i<sup>β</sup>.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Codes have small slices but they are not symmetric,
- 2 Function  $f_h$  is symmetric, i.e.  $f_h(s_1 \land s_2) = f_h(s_2 \land s_1)$ ,
- So For  $\gamma > 0$  exists symmetric object complexity function *f*, such that that  $\|f^{-1}(i)\| = O(i^{\gamma})$ ,
- For any symmetric complexity function f exist  $\alpha, \beta > 0$  such that  $\|f^{-1}(i)\| \ge \alpha \cdot i^{\beta}$ .

・ 同 ト ・ ヨ ト ・ ヨ ト

### Theorem (Counting Numbers)

There is exactly one complexity function on Numbers.

#### Theorem (Counting Words)

There is countable many symmetric (f(uv) = f(vu)) non-similar object complexity functions on words.

#### Theorem (Counting Trees)

*There are continuum many non-similar complexity functions on trees.* 

#### Theorem (Counting Numbers)

There is exactly one complexity function on Numbers.

### Theorem (Counting Words)

There is countable many symmetric (f(uv) = f(vu)) non-similar object complexity functions on words.

#### Theorem (Counting Trees)

There are continuum many non-similar complexity functions on trees.

・ロト ・回ト ・ヨト ・ヨト

#### Theorem (Counting Numbers)

There is exactly one complexity function on Numbers.

#### Theorem (Counting Words)

There is countable many symmetric (f(uv) = f(vu)) non-similar object complexity functions on words.

#### Theorem (Counting Trees)

There are continuum many non-similar complexity functions on trees.

ヘロト 人間ト くほト くほん

# Equivalence and Similarity

• Similarity and Equivalence put severe restrictions on the interaction of object complexity functions slices,

#### Two numbers:

- $Eqv(f_1, f_2)$ -degree of equivalence,
- $Sim(f_1, f_2)$ -degree of similarity.

#### Our Goal

- $f \approx g$  if and only if Eqv(f,g) = 1,
- $f \sim g$  if and if Sim(f,g) = 1.

・ロト ・聞ト ・ヨト ・ヨト

# Equivalence and Similarity

• Similarity and Equivalence put severe restrictions on the interaction of object complexity functions slices,

### Two numbers:

- $Eqv(f_1, f_2)$ -degree of equivalence,
- $Sim(f_1, f_2)$ -degree of similarity.

#### Our Goal

- $f \approx g$  if and only if Eqv(f,g) = 1,
- $f \sim g$  if and if Sim(f,g) = 1.

イロト イポト イヨト イヨト

# Equivalence and Similarity

• Similarity and Equivalence put severe restrictions on the interaction of object complexity functions slices,

#### Two numbers:

- $Eqv(f_1, f_2)$ -degree of equivalence,
- $Sim(f_1, f_2)$ -degree of similarity.

### Our Goal

- $f \approx g$  if and only if Eqv(f,g) = 1,
- $f \sim g$  if and if Sim(f,g) = 1.

イロト イポト イヨト イヨト

$$Eqv(f,g) := \frac{1}{2} \left( \liminf_{i \to \infty} \max_{j} \frac{\left\| f^{-1}(i) \cap g^{-1}(j) \right\|}{\left\| f^{-1}(i) \cup g^{-1}(j) \right\|} + \liminf_{j \to \infty} \max_{i} \frac{\left\| f^{-1}(i) \cap g^{-1}(j) \right\|}{\left\| f^{-1}(i) \cup g^{-1}(j) \right\|} \right),$$

![](_page_41_Figure_3.jpeg)

・ロト ・聞ト ・ヨト ・ヨト

æ

$$Eqv(f,g) := \frac{1}{2} \left( \liminf_{i \to \infty} \max_{j} \frac{\left\| f^{-1}(i) \cap g^{-1}(j) \right\|}{\left\| f^{-1}(i) \cup g^{-1}(j) \right\|} + \liminf_{j \to \infty} \max_{i} \frac{\left\| f^{-1}(i) \cap g^{-1}(j) \right\|}{\left\| f^{-1}(i) \cup g^{-1}(j) \right\|} \right),$$

![](_page_42_Figure_3.jpeg)

(日本) (日本) (日本)

æ

![](_page_43_Figure_2.jpeg)

(ロ) (部) (E) (E) (E)

$$Eqv(f,g) := \frac{1}{2} \left( \liminf_{i \to \infty} \max_{j} \frac{\left\| f^{-1}(i) \cap g^{-1}(j) \right\|}{\left\| f^{-1}(i) \cup g^{-1}(j) \right\|} + \liminf_{j \to \infty} \max_{i} \frac{\left\| f^{-1}(i) \cap g^{-1}(j) \right\|}{\left\| f^{-1}(i) \cup g^{-1}(j) \right\|} \right),$$

![](_page_44_Figure_3.jpeg)

・ロト ・四ト ・ヨト ・ヨト

æ

### Theorem

The following conditions are equivalent:

 f i g measure the same object sets, (µ<sub>f</sub> (A) exists if and only if µ<sub>g</sub> (A) exists),

A (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (

#### Theorem (Quick Test for Equivalence)

For two equivalent object complexity functions f and gif  $\lim_{i\to\infty} \frac{\|f^{-1}(i+1)\|}{\|f^{-1}(i)\|}$  exists, then  $\lim_{i\to\infty} \frac{\|g^{-1}(i+1)\|}{\|g^{-1}(i)\|}$  also exists and those both limits are equal.

Example 
$$(f_c, f_h, f_e \text{ are not equival})$$
  
1  $\lim_{i \to \infty} \frac{\|f_c^{-1}(i+1)\|}{\|f_c^{-1}(i)\|} = 4,$   
2  $\lim_{i \to \infty} \frac{\|f_h^{-1}(i+1)\|}{\|f_h^{-1}(i)\|} = \infty,$   
3  $\lim_{i \to \infty} \frac{\|f_e^{-1}(i+1)\|}{\|f_e^{-1}(i)\|} \le 2$ 

(日本) (日本) (日本)

## Theorem (Quick Test for Equivalence)

For two equivalent object complexity functions f and gif  $\lim_{i\to\infty} \frac{\|f^{-1}(i+1)\|}{\|f^{-1}(i)\|}$  exists, then  $\lim_{i\to\infty} \frac{\|g^{-1}(i+1)\|}{\|g^{-1}(i)\|}$  also exists and those both limits are equal.

### Example ( $f_c$ , $f_h$ , $f_e$ are not equivalent)

Im<sub>i→∞</sub> 
$$\frac{\|f_c^{-1}(i+1)\|}{\|f_c^{-1}(i)\|} = 4,$$
 Im<sub>i→∞</sub>  $\frac{\|f_h^{-1}(i+1)\|}{\|f_h^{-1}(i)\|} = \infty,$ 
 Im<sub>i→∞</sub>  $\frac{\|f_e^{-1}(i+1)\|}{\|f_e^{-1}(i)\|} \le 2$ 

4 日 2 4 得 2 4 ほ 2 4 ほ 2 4 -

# Degree of Similarity

# Degree of Similarity

$$Sim(f,g) = \lim_{i \to \infty} \sup \left\{ \frac{\|f^{-1}(I) \cap g^{-1}(J)\|}{\|f^{-1}(I) \cup g^{-1}(J)\|} : I, J \subseteq_{fin} [i,\infty) \right\}.$$

・ロト ・ 日 ・ ・ 目 ・ ・ 日 ・ ・

æ

# Degree of Similarity

#### What describes degree of similarity?

- $\bullet$  How much  $\mu_{f}\left(A\right)$  and  $\mu_{g}\left(A\right)$  can differ ,
- For S=Sim(f,g) a pair of numbers  $(x,y)\in [0,1]\times [0,1]$

![](_page_49_Figure_4.jpeg)

- I can be always realized if it falls into the white area,
- 2 can not be realized if it falls into black area.

Edward Szczypka (TCS UJ)

**Object Complexity - Examples and Tools** 

200

### Theorem

The following conditions are equivalent:

$$I Sim(f,g) = 1,$$

$$2 \quad f \sim g.$$

A (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (2) > (

臣

### Example

For two complexity functions f, g such that:

**1** 
$$||f^{-1}(i)|| = O(2^i) = ||g^{-1}(i)||,$$

2 
$$f(t^{\wedge}\cdot) = f(\cdot^{\wedge}t)$$
 i  $g(t^{\wedge}\cdot) = g(\cdot^{\wedge}t)$ .

There exists M < 1 such that if both  $\mu_{f_1}(A)$  and  $\mu_{f_2}(A)$  exist, then  $|\mu_{f_1}(A) - \mu_{f_2}(A)| < M$ .

#### Example

#### Functions

 $f_h$  - measures the hight of tree,  $f_e(s_1^{\wedge}s_2) = f_e(s_1)^{f_e(s_2)} + f_e(s_2)^{f_e(s_1)}$ are "completely non-similar" i.e. Sim(f,g) = 0. In particular  $\mu_{f_h}(A) = 1$  i  $\mu_{f_e}(A) = 0$  for some A.