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Algorithm Complexity

Definition (Algorithm Complexity)

Computer resources needed to run the algorithm.
1 time complexity - how many steps does it take,
2 memory complexity - how much memory does it take.

Certainly, the required resources strictly depend on the complexity
of input data.

Edward Szczypka (TCS UJ) Object Complexity - Examples and Tools



Algorithm Complexity

Definition (Algorithm Complexity)

Computer resources needed to run the algorithm.
1 time complexity - how many steps does it take,
2 memory complexity - how much memory does it take.

Certainly, the required resources strictly depend on the complexity
of input data.

Edward Szczypka (TCS UJ) Object Complexity - Examples and Tools



Complexity of Input Data

How can we define an input complexity function?
1 usually defined as a number of isolated parts,
2 would be nice to get the same input complexity for the data

with similar time and size algorithm complexity.
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Randomization Algorithms

Las Vegas and Monte Carlo Algorithms

Most problems are difficult (a lot of resources).
Solution - algorithm that

1 works fast on almost all inputs (Las Vegas algorithm),
2 gives correct answers for almost all cases (Monte Carlo

algorithm).

Problem (what we mean by almost all and/or sufficiently many.)
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Object Complexity Function and Complexity Measure

Definition (Object Complexity)

f : T → N is an input(object) complexity function for the set T of
objects with the order ≺ of such objects if

1 f(µ) < f(τ), for µ ≺ τ ,
2 f−1(i) finite,
3 lim infi→∞,i∈f(T )

∥∥f−1(i)
∥∥ = ∞.

Definition (Complexity Measure)

for A ⊆ T :

µf (A) = lim
i→∞,i∈f(T )

∥∥A ∩ f−1(i)
∥∥

‖f−1(i)‖
.
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Almost Every

Definition (Almost Every)

For a given property P , we say that almost every element of T has
this property if

µf ({t ∈ T : t satisfies P}) = 1.
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Examples

Example (Object Complexity Functions on Trees)
1 the number of leaves,
2 the number of nodes,
3 the number of branches,

and
1 the hight of tree.
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Similarity and Equivalence

Definition (Similarity of Object Complexity Functions)

f, g : T → N are similar (f ∼ g)
if and only if
µf (A) = µg (A) for any A ⊆ T when µf (A) and µg (A) exist.

Definition (Equivalence of Object Complexity Functions)

f, g : T → N are equivalent (f ≈ g)
if and only if
f and g are similar
and in addition µf (A) i µg (A) simultaneously exist or do not exist

Note
Equivalence ≈ is an equivalence relation,
Similarity ∼ usually not.
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Basic Properties of Complexity Measure

There exists a set that is not measurable by f

The set
⋃∞

i=1 f−1(2i) is not measurable by µf .
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Basic Properties of Complexity Measure

Definition (Code)

Code is an object complexity function with at most one element in
every slice.

Similarity and code
1 every object complexity function is similar to code,
2 but lack of transitivity.
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Basic Properties of Complexity Measure

There is a set for any fixed measure

Fix m ∈ [0, 1]
There is a set A, such that µf (A) = m.
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Basic Properties of Complexity Measure

Inclusion vs Similarity
If each slice of f is included in exactly one slice g
(with possibly finitely many exceptions) then f and g are similar
(f ∼ g).
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Examples of Object Complexity Functions

Natural Numbers
There is only one surjective object complexity function for (N, <),
i.e. f(n) = n.
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Examples of Object Complexity Functions

Definition (Words)

Words
Σ∗ =

⋃
n∈ω Σn

Order
u ≤ v wtw
xuy = v for some x, y ∈ Σ∗.

Complexity of {a, b}∗

Any function fk(u) with

fk(u) = (the number of a in u) + k · (the number of b in u)

is an object complexity function.
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Examples of Object Complexity Functions

Definition (Binary Trees)

Point · is a tree.
If s1 and s2 are trees

then t = s1
∧s2 is a tree.

s ≤ t if and only if
s is a subtree of t

Object Complexity on Trees
1 The width of tree fc (the number of leaves)

fc(·) = 1, fc(s1
∧s2) = fc(s1) + fc(s2),

2 The height of tree fh

fh(·) = 1, fh(s1
∧s2) = max{fc(s1), fc(s2)}+ 1,
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Object Complexity on Trees

Theorem (The smallest object complexity function on trees)

The function fh is the smallest function on binary trees,
i.e. fh(t) ≤ f(t),

The function fh has the biggest slices∥∥f−1
h (1, . . . , n)

∥∥ ≥ ∥∥f−1(1, . . . , n)
∥∥, for any f∥∥f−1

h (1, . . . , n)
∥∥ = 2θ(2n)
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Object Complexity on Trees

Functions with small slices
1 Codes have small slices but they are not symmetric,
2 Function fh is symmetric,

i.e. fh(s1
∧s2) = fh(s2

∧s1),
3 For γ > 0 exists symmetric object complexity function f , such

that
∥∥f−1(i)

∥∥ = O(iγ),
4 For any symmetric complexity function f exist α, β > 0 such

that
∥∥f−1(i)

∥∥ ≥ α · iβ .
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Counting Object Complexity Functions

Theorem (Counting Numbers)

There is exactly one complexity function on Numbers.

Theorem (Counting Words)

There is countable many symmetric (f(uv) = f(vu)) non-similar
object complexity functions on words.

Theorem (Counting Trees)

There are continuum many non-similar complexity functions on
trees.
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Equivalence and Similarity

Equivalence and Similarity
Similarity and Equivalence put severe restrictions on the
interaction of object complexity functions slices,

Two numbers:
Eqv(f1, f2)-degree of equivalence,
Sim(f1, f2)-degree of similarity.

Our Goal
f ≈ g if and only if Eqv(f, g) = 1,
f ∼ g if and if Sim(f, g) = 1.
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Degree of Equivalence

Degree of equivalence

Eqv(f, g) :=
1

2

lim inf
i→∞

max
j

∥∥∥f−1(i) ∩ g−1(j)
∥∥∥∥∥f−1(i) ∪ g−1(j)
∥∥ + lim inf

j→∞
max

i

∥∥∥f−1(i) ∩ g−1(j)
∥∥∥∥∥f−1(i) ∪ g−1(j)
∥∥

 ,
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Degree of Equivalence

Theorem
The following conditions are equivalent:

1 Eqv(f, g) = 1,
2 f ≈ g,
3 f i g measure the same object sets,

(µf (A) exists if and only if µg (A) exists),
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Degree of Equivalence

Theorem (Quick Test for Equivalence)

For two equivalent object complexity functions f and g

if limi→∞
‖f−1(i+1)‖
‖f−1(i)‖ exists,

then limi→∞
‖g−1(i+1)‖
‖g−1(i)‖ also exists

and those both limits are equal.

Example (fc, fh, fe are not equivalent)

1 limi→∞
‖f−1

c (i+1)‖
‖f−1

c (i)‖ = 4,

2 limi→∞
‖f−1

h (i+1)‖
‖f−1

h (i)‖ = ∞,

3 limi→∞
‖f−1

e (i+1)‖
‖f−1

e (i)‖ ≤ 2
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Degree of Similarity

Degree of Similarity

Sim(f, g) = lim
i→∞

sup

{∥∥f−1(I) ∩ g−1(J)
∥∥

‖f−1(I) ∪ g−1(J)‖
: I, J ⊆fin [i,∞)

}
.
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Degree of Similarity

What describes degree of similarity?

How much µf (A) and µg (A) can differ ,
For S = Sim(f, g) a pair of numbers (x, y) ∈ [0, 1]× [0, 1]

1 can be always realized if it falls into the white area,
2 can not be realized if it falls into black area.
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Degree of Similarity

Theorem
The following conditions are equivalent:

1 Sim(f, g) = 1,
2 f ∼ g.
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Degree of Similarity

Example
For two complexity functions f , g such that:

1
∥∥f−1(i)

∥∥ = O(2i) =
∥∥g−1(i)

∥∥,

2 f(t∧·) = f(·∧t) i g(t∧·) = g(·∧t).
There exists M < 1 such that
if both µf1 (A) and µf2 (A) exist, then |µf1 (A)− µf2 (A) | < M .
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Example
Functions

fh - measures the hight of tree,
fe(s1

∧s2) = fe(s1)fe(s2) + fe(s2)fe(s1)

are "completely non-similar" i.e. Sim(f, g) = 0. In particular
µfh

(A) = 1 i µfe (A) = 0 for some A.
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