Growth processes and

balanced and/or trees

Hervé Fournier, Danièle Gardy, Antoine Genitrini
Université de Versailles St-Quentin en Yvelines

CLA 2008

Outline: Growth processes

- A single connector:
- Majority function: Valiant (84)
- Extensions: Boppana (85), Servedio (99)
- Classification: Brodsky, Pippenger (05)
- Two connectors: \wedge and \vee
- Limit distribution
- Convergence speed

Example of growth process

- $H_{0}=\left\{x_{1}, \ldots, x_{k}\right\}, \pi_{0}$ uniform, connector \vee

Example of growth process

- $H_{0}=\left\{x_{1}, \ldots, x_{k}\right\}, \pi_{0}$ uniform, connector \vee
- $H_{1}=\left\{x_{i} \vee x_{j}, i, j \in\{1, \ldots k\}\right\}$, induced distribution π_{1} Expressions look like:

Example of growth process

- $H_{0}=\left\{x_{1}, \ldots, x_{k}\right\}, \pi_{0}$ uniform, connector \vee
- $H_{1}=\left\{x_{i} \vee x_{j}, i, j \in\{1, \ldots k\}\right\}$, induced distribution π_{1}
- $H_{2}=\left\{\left(x_{i} \vee x_{j}\right) \vee\left(x_{k} \vee x_{l}\right), i, j, k, l \in\{1, \ldots k\}\right\}$, induced distribution π_{2}
Expressions look like:

Example of growth process

- $H_{0}=\left\{x_{1}, \ldots, x_{k}\right\}, \pi_{0}$ uniform, connector \vee
- $H_{1}=\left\{x_{i} \vee x_{j}, i, j \in\{1, \ldots k\}\right\}$, induced distribution π_{1}
- $H_{2}=\left\{\left(x_{i} \vee x_{j}\right) \vee\left(x_{k} \vee x_{l}\right), i, j, k, l \in\{1, \ldots k\}\right\}$, induced distribution π_{2}

Distributions on Boolean functions $\tilde{\pi}_{n}$:

$$
\begin{array}{rlrl}
f_{i}:\{0,1\}^{k} & \rightarrow\{0,1\} \\
x & \rightarrow x_{i} & f_{i, j}:\{0,1\}^{k} & \rightarrow\{0,1\} \\
x & \rightarrow x_{i} \vee x_{j}
\end{array}
$$

$$
\begin{gathered}
\tilde{\pi}_{0}\left(f_{i}\right)=\frac{1}{k} \\
\tilde{\pi}_{1}\left(f_{i}\right)=\frac{1}{k^{2}} \text { and } \tilde{\pi}_{1}\left(f_{i, j}\right)=\frac{2}{k^{2}}
\end{gathered}
$$

Does the sequence $\left(\tilde{\pi}_{n}\right)_{n \in \mathbb{N}}$ have a limit?

If the limit exists, is it a probability distribution?

Another point of view

Large and/or trees conditioned by the fact that all leaves are at the same level.

Previous results

Valiant's problem (84)

- Goal: Obtaining a small expression for the function Majority (k).

Valiant's problem (84)

- Goal: Obtaining a small expression for the function Majority (k).
- Method: $H_{0}=\left\{x_{1}, \ldots, x_{k}, 0\right\}, \pi_{0}$ non uniform,

$$
C(x, y, z, t)=(x \vee y) \wedge(z \vee t)
$$

Valiant's problem (84)

- Goal: Obtaining a small expression for the function Majority (k).
- Method: $H_{0}=\left\{x_{1}, \ldots, x_{k}, 0\right\}, \pi_{0}$ non uniform,

$$
C(x, y, z, t)=(x \vee y) \wedge(z \vee t)
$$

- Theorem: Let $n_{0}=O(\log k)$. It is the smallest value for this growth process such that
$\forall n>n_{0}, \pi_{n}(M a j) \geqslant 1 / 2$.

Valiant's problem (84)

- Goal: Obtaining a small expression for the function Majority (k).
- Method: $H_{0}=\left\{x_{1}, \ldots, x_{k}, 0\right\}, \pi_{0}$ non uniform,

$$
C(x, y, z, t)=(x \vee y) \wedge(z \vee t)
$$

- Theorem: Let $n_{0}=O(\log k)$. It is the smallest value for this growth process such that $\forall n>n_{0}, \pi_{n}(M a j) \geqslant 1 / 2$.
- Gupta and Mahajan (97) have improved n_{0} (but it is steal $O(\log k)$) by taking another growth process.

Threshold functions

- Definition: f is the θ-threshold function:

For all assignment $x, f(x)=1 \Longleftrightarrow|x| \geqslant \theta$.

Threshold functions

- Definition: f is the θ-threshold function: For all assignment $x, f(x)=1 \Longleftrightarrow|x| \geqslant \theta$.
- 85: Boppana extends Valiant's results to all threshold functions.

Threshold functions

- Definition: f is the θ-threshold function: For all assignment $x, f(x)=1 \Longleftrightarrow|x| \geqslant \theta$.
- 85: Boppana extends Valiant's results to all threshold functions.
- 99: Servedio extends the results to all weighted threshold functions.

Classification

Study of growth processes according to their connector:

Classification

Study of growth processes according to their connector:

- Savicky (90): linearity

Classification

Study of growth processes according to their connector:

- Savicky (90): linearity
- Brodsky and Pippenger (05): non-linearity and
- self-duality

Classification

Study of growth processes according to their connector:

- Savicky (90): linearity
- Brodsky and Pippenger (05): non-linearity and
- self-duality
- balancedness

Classification

Study of growth processes according to their connector:

- Savicky (90): linearity
- Brodsky and Pippenger (05): non-linearity and
- self-duality
- balancedness
- monotonicity

Classification

Study of growth processes according to their connector:

- Savicky (90): linearity
- Brodsky and Pippenger (05): non-linearity and
- self-duality
- balancedness
- monotonicity

Moreover they studied the speed convergence of the growth processes.

What does happen if we allow several connectors ?

Which distribution on the set of connectors ?

Balanced and/or trees

Definition

- Let $H_{0}=\left\{x_{1}, \ldots, x_{k}\right\}, \pi_{0}$ any distribution on H_{0}, we denote $\pi_{0}\left(x_{i}\right)=\alpha_{i}$.

Definition

- Let $H_{0}=\left\{x_{1}, \ldots, x_{k}\right\}, \pi_{0}$ any distribution on H_{0}, we denote $\pi_{0}\left(x_{i}\right)=\alpha_{i}$.
- Let $x=\left(x_{1}, \ldots, x_{k}\right)$ be an assignment. The weight of x is:

$$
|x|=\sum_{i=1}^{k} \alpha_{i} x_{i}
$$

Definition

- Let $H_{0}=\left\{x_{1}, \ldots, x_{k}\right\}, \pi_{0}$ any distribution on H_{0}, we denote $\pi_{0}\left(x_{i}\right)=\alpha_{i}$.
- Let $x=\left(x_{1}, \ldots, x_{k}\right)$ be an assignment. The weight of x is:

$$
|x|=\sum_{i=1}^{k} \alpha_{i} x_{i}
$$

- Let $T_{\theta}^{\alpha_{1}, \ldots, \alpha_{k}}$ be the weighted θ-threshold function:

$$
T_{\theta}^{\alpha_{1}, \ldots, \alpha_{k}}(x)=1 \Longleftrightarrow \alpha_{1} x_{1}+\cdots+\alpha_{k} x_{k}>\theta .
$$

Results

Let $p \in[0,1]$ be the probability of \wedge (1-p the one of \vee). The growth process $\mathcal{G}_{p}\left(\pi_{0}\right)$ admits a limit probability distribution π such that

- $\pi\left(x_{1} \wedge \cdots \wedge x_{k}\right)=1$ if $p>0.5$.
- $\pi\left(x_{1} \vee \cdots \vee x_{k}\right)=1$ if $p<0.5$.
- If $p=0.5, \pi$ is the following probability distribution $D^{\alpha_{1}, \ldots, \alpha_{k}}$.

Distribution $D^{\alpha_{1}, \ldots, \alpha_{k}}$

When θ runs over $[0,1]$, we get a set of parallel hyperplanes:

$$
\alpha_{1} x_{1}+\cdots+\alpha_{k} x_{k}=\theta .
$$

Let $\theta_{0}, \theta_{1}, \ldots, \theta_{r}$ be the increasing sequence such that

$$
\forall i \in\{0, \ldots, r\}, \exists x=\left(x_{1}, \ldots, x_{k}\right) \mid \alpha_{1} x_{1}+\cdots+\alpha_{k} x_{k}=\theta_{i} .
$$

Under $D^{\alpha_{1}, \ldots, \alpha_{k}}$, for each $i \in\{0, \ldots, r-1\}$ the probability of the weighted θ_{i}-threshold function is

$$
\theta_{i+1}-\theta_{i}
$$

Example with 2 variables

Let $\pi_{c}(\wedge)=\pi_{c}(\vee)=0.5$.
Let $H_{0}=\left\{x_{1}, x_{2}\right\}, \pi_{0}\left(x_{1}\right)=1 / 5$ and $\pi_{0}\left(x_{2}\right)=4 / 5$.

$$
\frac{1}{5} x_{1}+\frac{4}{5} x_{2}=\theta
$$

Example with 2 variables

Let $\pi_{c}(\wedge)=\pi_{c}(\vee)=0.5$.
Let $H_{0}=\left\{x_{1}, x_{2}\right\}, \pi_{0}\left(x_{1}\right)=1 / 5$ and $\pi_{0}\left(x_{2}\right)=4 / 5$.

$$
\frac{1}{5} x_{1}+\frac{4}{5} x_{2}=\theta
$$

Example with 2 variables

- Limit probability of $T_{0}^{1 / 5,4 / 5}$ (i.e. $x \rightarrow x_{1} \vee x_{2}$): $1 / 5$.

Example with 2 variables

- Limit probability of $T_{0}^{1 / 5,4 / 5}$ (i.e. $x \rightarrow x_{1} \vee x_{2}$): $1 / 5$.
- Limit probability of $T_{1 / 5}^{1 / 54 / 5}$ (i.e. $x \rightarrow x_{2}$): 3/5.

Example with 2 variables

- Limit probability of $T_{0}^{1 / 5,4 / 5}$ (i.e. $x \rightarrow x_{1} \vee x_{2}$): $1 / 5$.
- Limit probability of $T_{1 / 5}^{1 / 54 / 5}$ (i.e. $x \rightarrow x_{2}$): 3/5.
- Limit probability of $T_{4 / 5}^{1 / 5,4 / 5}$ (i.e. $x \rightarrow x_{1} \wedge x_{2}$): $1 / 5$ B.

Key idea of the proof

- Let a, b be two distinct assignments.

Key idea of the proof

- Let a, b be two distinct assignments.
- Let $\alpha, \beta \in\{0,1\}$,

$$
u_{n}^{(\alpha, \beta)}=\operatorname{Pr}_{X \in E_{n}}(X(a)=\alpha \text { and } X(b)=\beta) .
$$

Key idea of the proof

- Let a, b be two distinct assignments.
- Let $\alpha, \beta \in\{0,1\}$,

$$
u_{n}^{(\alpha, \beta)}=\operatorname{Pr}_{X \in E_{n}}(X(a)=\alpha \text { and } X(b)=\beta) .
$$

- Analysis of $\left(u_{n}^{(\alpha, \beta)}\right)_{n \in \mathbb{N}}$ according to a and b.

Conclusion: support $(\pi) \subset\{$ weighted threshold $f c t\}$

Key idea of the proof

- Let a, b be two distinct assignments.
- Let $\alpha, \beta \in\{0,1\}$,

$$
u_{n}^{(\alpha, \beta)}=\operatorname{Pr}_{X \in E_{n}}(X(a)=\alpha \text { and } X(b)=\beta) .
$$

- Analysis of $\left(u_{n}^{(\alpha, \beta)}\right)_{n \in \mathbb{N}}$ according to a and b.

Conclusion: support $(\pi) \subset\{$ weighted threshold $f c t\}$

- Study by recurrence of the limit proba. of each $T_{\theta}^{\alpha_{1}, \ldots, \alpha_{k}}$.

Extension

What does happen when negative literals or constants are added to H_{0} ?

Extension

What does happen when negative literals or constants are added to H_{0} ?

- Results on growth process with $H_{0}=\left\{x_{1}, \ldots, x_{2 k+2}\right\}$.

Extension

What does happen when negative literals or constants are added to H_{0} ?

- Results on growth process with $H_{0}=\left\{x_{1}, \ldots, x_{2 k+2}\right\}$.
- Identifying x_{k+i} and $\bar{x}_{i}, x_{2 k+1}$ and $1, x_{2 k+2}$ and 0.

Extension

What does happen when negative literals or constants are added to H_{0} ?

- Results on growth process with $H_{0}=\left\{x_{1}, \ldots, x_{2 k+2}\right\}$.
- Identifying x_{k+i} and $\bar{x}_{i}, x_{2 k+1}$ and $1, x_{2 k+2}$ and 0.
- Adding the probabilities of the repeated functions.

Example

$H_{0}=\left\{x_{1}, \ldots, x_{k}, \bar{x}_{1}, \ldots, \bar{x}_{k}, 1,0\right\}$, uniform distribution on the connectors, uniform distribution on H_{0}.

Example

$H_{0}=\left\{x_{1}, \ldots, x_{k}, \bar{x}_{1}, \ldots, \bar{x}_{k}, 1,0\right\}$, uniform distribution on the connectors, uniform distribution on H_{0}.

The limit distribution π exists and
is uniform on both constant functions 1 and 0 .

Convergence speed

Let P be the growth process. Let denote π its limit
distribution and n_{ϵ} the smallest value such that

$$
\forall \epsilon, \forall n>n_{\epsilon}, \max _{f \in \mathcal{B}_{k}}\left|\pi_{n}(f)-\pi(f)\right| \leqslant \epsilon .
$$

If all assignments have different weights,
then $n_{\epsilon} \sim k \log (1 / \epsilon)$, otherwise $n_{\epsilon} \sim k / \epsilon$.

Conclusion

- Balancedness really modifies the limit distribution.

Conclusion

- Balancedness really modifies the limit distribution.
- What does happen if we change the set of connectors?

Conclusion

- Balancedness really modifies the limit distribution.
- What does happen if we change the set of connectors?
- By changing the connectors, could we obtain a better convergence speed?

