Growth processes and balanced and/or trees

Hervé Fournier, Danièle Gardy, Antoine Genitrini

Université de Versailles St-Quentin en Yvelines

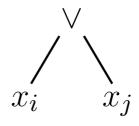
CLA 2008

Outline: Growth processes

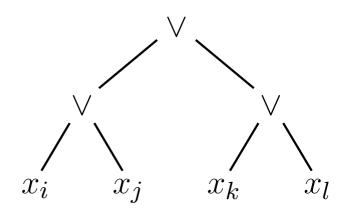
- A single connector:
 - Majority function: Valiant (84)
 - Extensions: Boppana (85), Servedio (99)
 - Classification: Brodsky, Pippenger (05)
- Two connectors: ∧ and ∨
 - Limit distribution
 - Convergence speed

• $H_0 = \{x_1, \dots, x_k\}$, π_0 uniform, connector \vee

- $H_0 = \{x_1, \dots, x_k\}$, π_0 uniform, connector \vee
- $H_1 = \{x_i \lor x_j, i, j \in \{1, ... k\}\}$, induced distribution π_1 Expressions look like:



- $H_0 = \{x_1, \dots, x_k\}$, π_0 uniform, connector \vee
- $H_1 = \{x_i \vee x_j, i, j \in \{1, \dots k\}\}$, induced distribution π_1
- $H_2 = \{(x_i \lor x_j) \lor (x_k \lor x_l), i, j, k, l \in \{1, ... k\}\},$ induced distribution π_2 Expressions look like:



- $H_0 = \{x_1, \dots, x_k\}$, π_0 uniform, connector \vee
- $H_1 = \{x_i \vee x_j, i, j \in \{1, \dots k\}\}$, induced distribution π_1
- $H_2 = \{(x_i \vee x_j) \vee (x_k \vee x_l), i, j, k, l \in \{1, \dots k\}\},$ induced distribution π_2

Distributions on Boolean functions $\tilde{\pi}_n$:

$$f_i: \{0,1\}^k \to \{0,1\}$$
 $f_{i,j}: \{0,1\}^k \to \{0,1\}$ $x \to x_i$ $x \to x_i \lor x_j$

$$\tilde{\pi}_0(f_i) = \frac{1}{k}$$

$$\tilde{\pi}_1(f_i) = \frac{1}{k^2} \text{ and } \tilde{\pi}_1(f_{i,j}) = \frac{2}{k^2}$$

Does the sequence $(\tilde{\pi}_n)_{n\in\mathbb{N}}$ have a limit?

If the limit exists, is it a probability distribution?

Another point of view

Large and/or trees conditioned by the fact that all leaves are at the same level.

Previous results

 Goal: Obtaining a small expression for the function Majority(k).

- Goal: Obtaining a small expression for the function Majority(k).
- *Method:* $H_0 = \{x_1, ..., x_k, 0\}, \pi_0$ non uniform, $C(x, y, z, t) = (x \lor y) \land (z \lor t)$

- Goal: Obtaining a small expression for the function Majority(k).
- *Method:* $H_0 = \{x_1, ..., x_k, 0\}$, π_0 non uniform, $C(x, y, z, t) = (x \lor y) \land (z \lor t)$
- Theorem: Let $n_0 = O(\log k)$. It is the smallest value for this growth process such that $\forall n > n_0, \ \pi_n(Maj) \geqslant 1/2$.

- Goal: Obtaining a small expression for the function Majority(k).
- *Method:* $H_0 = \{x_1, ..., x_k, 0\}$, π_0 non uniform, $C(x, y, z, t) = (x \lor y) \land (z \lor t)$
- Theorem: Let $n_0 = O(\log k)$. It is the smallest value for this growth process such that $\forall n > n_0, \ \pi_n(Maj) \geqslant 1/2$.
- Gupta and Mahajan (97) have improved n_0 (but it is steal $O(\log k)$) by taking another growth process.

Threshold functions

• Definition: f is the θ -threshold function: For all assignment x, $f(x) = 1 \iff |x| \geqslant \theta$.

Threshold functions

- Definition: f is the θ -threshold function: For all assignment x, $f(x) = 1 \iff |x| \geqslant \theta$.
- 85: Boppana extends Valiant's results to all threshold functions.

Threshold functions

- Definition: f is the θ -threshold function: For all assignment x, $f(x) = 1 \iff |x| \geqslant \theta$.
- 85: Boppana extends Valiant's results to all threshold functions.
- 99: Servedio extends the results to all weighted threshold functions.

Study of growth processes according to their connector:

Savicky (90): linearity

- Savicky (90): linearity
- Brodsky and Pippenger (05): non-linearity and
 - self-duality

- Savicky (90): linearity
- Brodsky and Pippenger (05): non-linearity and
 - self-duality
 - balancedness

- Savicky (90): linearity
- Brodsky and Pippenger (05): non-linearity and
 - self-duality
 - balancedness
 - monotonicity

Study of growth processes according to their connector:

- Savicky (90): linearity
- Brodsky and Pippenger (05): non-linearity and
 - self-duality
 - balancedness
 - monotonicity

Moreover they studied the speed convergence of the growth processes.

What does happen if we allow several connectors?

Which distribution on the set of connectors?

Balanced and/or trees

Definition

• Let $H_0 = \{x_1, \dots, x_k\}$, π_0 any distribution on H_0 , we denote $\pi_0(x_i) = \alpha_i$.

Definition

- Let $H_0 = \{x_1, \dots, x_k\}$, π_0 any distribution on H_0 , we denote $\pi_0(x_i) = \alpha_i$.
- Let $x = (x_1, \dots, x_k)$ be an assignment. The *weight* of x is:

$$|x| = \sum_{i=1}^{k} \alpha_i x_i.$$

Definition

- Let $H_0 = \{x_1, \dots, x_k\}$, π_0 any distribution on H_0 , we denote $\pi_0(x_i) = \alpha_i$.
- Let $x = (x_1, \dots, x_k)$ be an assignment. The *weight* of x is:

$$|x| = \sum_{i=1}^{k} \alpha_i x_i.$$

• Let $T_{\theta}^{\alpha_1,...,\alpha_k}$ be the weighted θ -threshold function:

$$T_{\theta}^{\alpha_1,\dots,\alpha_k}(x) = 1 \iff \alpha_1 x_1 + \dots + \alpha_k x_k > \theta.$$

Results

Let $p \in [0,1]$ be the probability of \wedge (1-p the one of \vee). The growth process $\mathcal{G}_p(\pi_0)$ admits a limit probability distribution π such that

- $\pi(x_1 \wedge \cdots \wedge x_k) = 1$ if p > 0.5.
- $\pi(x_1 \vee \cdots \vee x_k) = 1 \text{ if } p < 0.5.$
- If p=0.5, π is the following probability distribution $D^{\alpha_1,\dots,\alpha_k}$.

Distribution $D^{\alpha_1,...,\alpha_k}$

When θ runs over [0,1], we get a set of parallel hyperplanes:

$$\alpha_1 x_1 + \dots + \alpha_k x_k = \theta.$$

Let $\theta_0, \theta_1, \dots, \theta_r$ be the increasing sequence such that

$$\forall i \in \{0, \dots, r\}, \ \exists \ x = (x_1, \dots, x_k) \mid \alpha_1 x_1 + \dots + \alpha_k x_k = \theta_i.$$

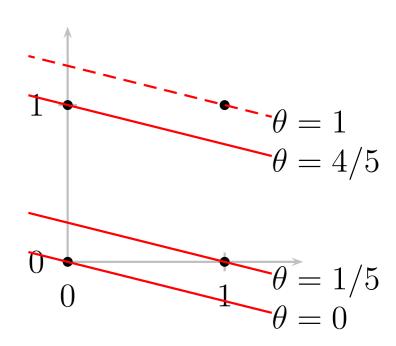
Under $D^{\alpha_1,\dots,\alpha_k}$, for each $i \in \{0,\dots,r-1\}$ the probability of the weighted θ_i -threshold function is

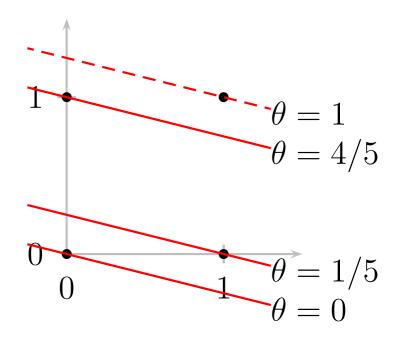
$$\theta_{i+1} - \theta_i$$
.

Let
$$\pi_c(\wedge)=\pi_c(\vee)=0.5$$
.
 Let $H_0=\{x_1,x_2\}$, $\pi_0(x_1)=1/5$ and $\pi_0(x_2)=4/5$.
$$\frac{1}{5}x_1+\frac{4}{5}x_2=\theta$$

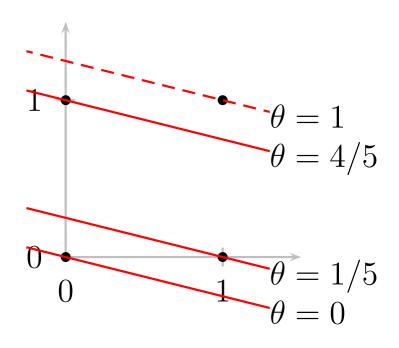
Let
$$\pi_c(\land) = \pi_c(\lor) = 0.5$$
.
Let $H_0 = \{x_1, x_2\}$, $\pi_0(x_1) = 1/5$ and $\pi_0(x_2) = 4/5$.

$$\frac{1}{5}x_1 + \frac{4}{5}x_2 = \theta$$

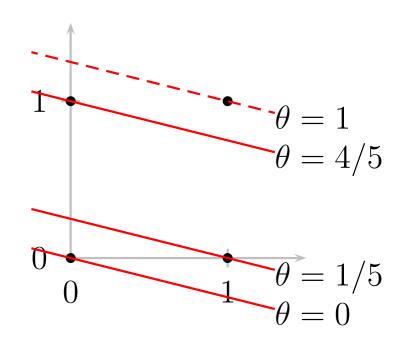




• Limit probability of $T_0^{1/5,4/5}$ (i.e. $x \to x_1 \lor x_2$): 1/5.



- Limit probability of $T_0^{1/5,4/5}$ (i.e. $x \to x_1 \lor x_2$): 1/5.
- Limit probability of $T_{1/5}^{1/5,4/5}$ (i.e. $x \to x_2$): 3/5.



- Limit probability of $T_0^{1/5,4/5}$ (i.e. $x \to x_1 \lor x_2$): 1/5.
- Limit probability of $T_{1/5}^{1/5,4/5}$ (i.e. $x \to x_2$): 3/5.
- Limit probability of $T_{4/5}^{1/5,4/5}$ (i.e. $x \to x_1 \land x_2$): 1/5.

 Balanced and/or trees –

Key idea of the proof

• Let *a*, *b* be two distinct assignments.

Key idea of the proof

- Let a, b be two distinct assignments.
- Let $\alpha, \beta \in \{0, 1\}$,

$$u_n^{(\alpha,\beta)} = Pr_{X \in E_n} \left(X(a) = \alpha \text{ and } X(b) = \beta \right).$$

Key idea of the proof

- Let a, b be two distinct assignments.
- Let $\alpha, \beta \in \{0, 1\}$,

$$u_n^{(\alpha,\beta)} = Pr_{X \in E_n} \left(X(a) = \alpha \text{ and } X(b) = \beta \right).$$

• Analysis of $\left(u_n^{(\alpha,\beta)}\right)_{n\in\mathbb{N}}$ according to a and b.

Conclusion: $support(\pi) \subset \{weighted\ threshold\ fct\}$

Key idea of the proof

- Let a, b be two distinct assignments.
- Let $\alpha, \beta \in \{0, 1\}$,

$$u_n^{(\alpha,\beta)} = Pr_{X \in E_n} \left(X(a) = \alpha \text{ and } X(b) = \beta \right).$$

- Analysis of $\left(u_n^{(\alpha,\beta)}\right)_{n\in\mathbb{N}}$ according to a and b. Conclusion: $support(\pi)\subset\{weighted\ threshold\ fct\}$
- Study by recurrence of the limit proba. of each $T_{\theta}^{\alpha_1, \dots, \alpha_k}$.

What does happen when negative literals or constants are added to H_0 ?

What does happen when negative literals or constants are added to H_0 ?

• Results on growth process with $H_0 = \{x_1, \dots, x_{2k+2}\}$.

What does happen when negative literals or constants are added to H_0 ?

- Results on growth process with $H_0 = \{x_1, \dots, x_{2k+2}\}$.
- Identifying x_{k+i} and \overline{x}_i , x_{2k+1} and 1, x_{2k+2} and 0.

What does happen when negative literals or constants are added to H_0 ?

- Results on growth process with $H_0 = \{x_1, \dots, x_{2k+2}\}$.
- Identifying x_{k+i} and \overline{x}_i , x_{2k+1} and 1, x_{2k+2} and 0.
- Adding the probabilities of the repeated functions.

Example

 $H_0 = \{x_1, \dots, x_k, \overline{x}_1, \dots, \overline{x}_k, 1, 0\},$ uniform distribution on the connectors, uniform distribution on H_0 .

Example

 $H_0 = \{x_1, \dots, x_k, \overline{x}_1, \dots, \overline{x}_k, 1, 0\},$ uniform distribution on the connectors, uniform distribution on H_0 .

The limit distribution π exists and is uniform on both constant functions 1 and 0.

Convergence speed

Let P be the growth process. Let denote π its limit distribution and n_{ϵ} the smallest value such that

$$\forall \epsilon, \ \forall n > n_{\epsilon}, \ max_{f \in \mathcal{B}_k} |\pi_n(f) - \pi(f)| \leqslant \epsilon.$$

If all assignments have different weights,

then $n_{\epsilon} \sim k \log(1/\epsilon)$, otherwise $n_{\epsilon} \sim k/\epsilon$.

Conclusion

Balancedness really modifies the limit distribution.

Conclusion

Balancedness really modifies the limit distribution.

What does happen if we change the set of connectors?

Conclusion

Balancedness really modifies the limit distribution.

What does happen if we change the set of connectors?

 By changing the connectors, could we obtain a better convergence speed?