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The main polynomial

Number of A-terms with at most X variables
PG =%
Pri1(X) = Pa(X+ 1) + X1 r—pn PUX) Pr(X)

This gives:

Po(X)=14+X Ps(X) = 42 + 49X +26X2 +10X°
Ps(X) =2+ X+ X? P7(X) =139 +...+5X*
Py(X) =4 +5X+3X2 Pg(X) =506+...+35X*

Ps(X) =13 +17X +6X2 +2X°3

What are thg coefficients of P ?

Pn(X) = Z,Eo—‘ Cn,ixi
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LPolynomials

The coefficients of the main polynomial

Pa(X) = £ 6y X0

Number of A-terms with 1 variable occurring /-times
Ci1 = 1,C1k =0(k #1)

T k-+i
Cn+1,k— = 0( i )an+l+2/+r,n C/lCr/
i+j=k
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LPolynomials

The derivatives of the main polynomial

Derivation

: = 0| /% o,
1RO = A plEl 6, ik = g g ik

Therkefore
LPYIX) :

Number of A-terms with at most X variables + 1 variable
occurring k-times

Pr(X+1) =213 1P (Xx)
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LPolynomials
Term with exactly X variables

Formula

Qn(0) = Pp(0), Qn(X+1) = Pa(X+1) — Pa(X)
@1 =@ 0 X = 1)

Qn+1(X) = Qn(X) + Qn(X £ 1)

Tl itr=n X% o QU (Xo + X1) Qr(Xo + Xa)
Mg e X

Useful to count some classes of terms
Example: affine terms

Ai(1) =1, A1 (X) =0(X # 1)

An1(X) = An(X) + An(X + 1)

R %AI(XﬂAr(XZ)
X1+ X=X
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First result
Yo < 1 we have f, g exponential, such that:

n—n*

fln—n)("*+X—-1)2

< Po(X) < g(n)(n+X)[2]

The asymptotic development of P,(0)

B0k izl
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Better upper bound

Size zero for variables
Py(X) = X instead of Py(X) = X

RO G X))
The dominant coefficient is exact.
Conjecture for size one variables
Pon(X) < (2n—1)C(n—1)(2n—1+ X)"
Pani1(X) < C(n)(2n+ X)"
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Normalisable terms

1.1

1.85

o8 188 158 288

2958 Jae
o
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Other results by Jue Wang (Boston) 2004

» Typable terms converges toward probability 0
» Ratio of application nodes / lambda nodes

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000



Counting A-terms

LCcunting variables

Outline of the talk

Counting variables



Counting A-terms

LCcunting variables

General setting

Recurrence formula

Po(X) =@
Pri1(X) = Vo (X) TRalX + 1) + 30— FilX) Pi(X)
> n:Ssize

» X : number of available variables
» V,(X) : the number of terms which are variables
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General setting

Recurrence formula

Po(X) =@
Pri1(X) = Vo (X) TRalX + 1) + 30— FilX) Pi(X)
> n:Ssize

» X : number of available variables
» V,(X) : the number of terms which are variables

Until now
unit size: V4(X) = X and V,(X) =0ifn > 1

Is it realistic? Well...

» 1 bit to represent many possible choices
» a super-exponential number of terms of a given “size”
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Non-unit cost of variables
A concrete notion of size

» use De Bruijn indexes
» take into account the cost of such indexes

Possible choices

» unary De Bruijn index:

1 i = 2
0 else

Va(X) = {

» binary De Bruijn index:

Va(X) =#{i:i < X and |bin(i)| = n}



Counting A-terms

LCcunting variables

Small closed terms in the 3 models

size constant unary binary
2 A AR A0
2
3 Ax XX (x2) PER 12'?
ASA A%.0
4 ilicsoiraptisslgs) A2 A3.1
S XN 15l 200
25 4
AX{, Xo, X3, Xs.X;  (x4) A3.11 A);;(;O1/11) G
AXq, Xo.X; Xi (x4) A2q 1 :
5 / A2.(0/1 1 4
(Ax.x) (Ax.x) A(A 1) '(/\ O). (1.0)
Gl : :
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Differences between the 3 models
For non-unit costs

» the growth rate is only exponential
» Pp(X) is not a polynomial in X

filsl:]

7ol -

6a8

hee -

488 -

3688

2688 -

166

2] 58 188 158 288 258 380 350 4085 458 SHO0
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Proportion of terms in hormal form

a i8 28 38 48 58 68 78 88 98 188
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Proportion of terms starting with a lambda

8 1668 288 3880 488 588 688 A8 §88 966 1886
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Proportion of terms starting with [\/ \/ﬂ lambdas
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Proportion of terms not containing identity

Remark: id has the same size for the 3 models

a 58 188 158 2688 258 388 358 468 456 588
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Proportion of terms not containing ()

Remark: () has the same size for the 3 models

1

8,999 -

8,998

8,997 -

8,996 -

8,995 -

8,994 -

0,993 . . . . \ . . . .
a 58 188 158 288 258 388 358 488_458 588
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» studied property: the halting problem (H)
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Analogous questions in the Turing world

» syntactical objects: fully specified Turing machines
o {0, 1} x Q, — {0, 1} x:(QnU {halt}) x {E 'R}
» studied property: the halting problem (H)

Simple facts

1. there are (4n+ 4)2" machines with n states
2. d(H) < 1—1/¢ (if it exists)

» determining d(H) in the general setting is still open, but...
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Result of another kind...

Theorem (J.D. Hamkins, A. Miasnikov, 2005)
There exists a set B of machines such that:
1. B is decidable (in polynomial time);
2. B has asymptotic density 1;
3. the halting problem is decidable (in polynomial time) on B.
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Result of another kind...

Theorem (J.D. Hamkins, A. Miasnikov, 2005)
There exists a set B of machines such that:
1. B is decidable (in polynomial time);
2. B has asymptotic density 1;
3. the halting problem is decidable (in polynomial time) on B.

it uses semi-infinite tape Turing-machines!
if falling-off the tape is not halting then d(H) = 0

Proof idea
Uses a trick to convert the first steps of a random Turing
machine into a random walk of the head.
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Yet another kind of result...

Definition
A set is strongly generic if its complement converges
exponentially fast to 0 in density.

Theorem (A. Rybalov, 2005)
The halting problem is strongly undecidable, i.e. it is
undecidable on any strongly generic set of Turing machines.

Proof idea

The set of machines computing a given (computable) function
is not strongly negligible (one can add garbage code at some
places without affecting the computation).
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Research directions

» “combinatorial” proof that for any fixed tree Ty, a large
random tree always contains Ty (Kolmogorov
incompressibility method?)

» typical tree shape of random A-terms (e.g. relation
between height and size)

» other experiments: random generation of big A-terms to
have an idea of their shape
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Research directions

» possible properties to look at:
» about shape: normality, beginning by a A,
» depending on the reduction rule: SN, WN,
» other: typability

» finding sets of terms with density 1 for which SN or WN
becomes decidable

» consider other distributions than the uniform one (e.g.,
similar to the BST model)

» any non-trivial result about random A-terms with
any representation of variables is welcome!



	Introduction, Problem Statement and First Results
	Polynomials
	Bounding

