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Counting λ-terms

Polynomials

The main polynomial

Number of λ-terms with at most X variables
P1(X ) = X
Pn+1(X ) = Pn(X + 1) + ∑l+r=n Pl(X )Pr (X )

This gives:
P2(X ) = 1 + X P6(X ) = 42 + 49X + 26X 2 + 10X 3

P3(X ) = 2 + X + X 2 P7(X ) = 139 + . . . + 5X 4

P4(X ) = 4 + 5X + 3X 2 P8(X ) = 506 + . . . + 35X 4

P5(X ) = 13 + 17X + 6X 2 + 2X 3

What are the coefficients of P ?
Pn(X ) = ∑

d n
2e

i=0 cn,i X i
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Polynomials

The coefficients of the main polynomial

What are the coefficients of P ?
Pn(X ) = ∑

d n
2e

i=0 cn,i X i

Number of λ-terms with 1 variable occurring i-times
c1,1 = 1, c1,k = 0(k 6= 1)
cn+1,k = ∑+∞

i=0 (k+i
i )cn,k+i + ∑ l + r = n

i + j = k

cl ,icr ,j
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Polynomials

The derivatives of the main polynomial

Derivation
1
k ! P

(k)
n (X ) = 1

k ! ∑
d n

2e−k
i=k cn,i

i !
(i−k)! X

i−k = ∑
d n

2e−k
i=k cn,i ( i

k)X
i−k

Therefore
1
k ! P

(k)
n (X ) :

Number of λ-terms with at most X variables + 1 variable
occurring k -times
Pn(X + 1) = ∑+∞

i=0
1
k ! P

(k)
n (X )
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Polynomials

Term with exactly X variables

Formula
Qn(0) = Pn(0), Qn(X + 1) = Pn(X + 1)− Pn(X )
Q1(1) = 1, Q1(X ) = 0(X 6= 1)
Qn+1(X ) = Qn(X ) + Qn(X + 1)

+ ∑ l + r = n
X0 + X1 + X2 = X

X !
X0!X1!X2! Ql(X0 + X1)Qr (X0 + X2)

Useful to count some classes of terms
Example: affine terms
A1(1) = 1, A1(X ) = 0(X 6= 1)
An+1(X ) = An(X ) + An(X + 1)

+ ∑ l + r = n
X1 + X2 = X

X !
X1!X2! Al(X1)Ar (X2)
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Bounding

Bounding

First result
∀α < 1 we have f , g exponential, such that:

f (n− nα)(nα + X − 1)
n−nα

2 ≤ Pn(X ) ≤ g(n)(n + X )d
n
2e

The asymptotic development of Pn(0)

Pn(0) ∼ nd
n
2e...
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Bounding

Better upper bound

Size zero for variables
P0(X ) = X instead of P1(X ) = X

Pn(X ) ≤ C(n)(n + X )n+1

The dominant coefficient is exact.

Conjecture for size one variables

P2n(X ) ≤ (2n− 1)C(n− 1)(2n− 1 + X )n

P2n+1(X ) ≤ C(n)(2n + X )n
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Counting specific terms

Terms avoiding a given term as subterm
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Counting specific terms

Terms avoiding a given pattern as subterm
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Counting specific terms

Normalisable terms
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Counting specific terms

Other results by Jue Wang (Boston) 2004
I Typable terms converges toward probability 0
I Ratio of application nodes / lambda nodes
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Counting variables

General setting

Recurrence formula
P0(X ) = 0
Pn+1(X ) = Vn+1(X ) + Pn(X + 1) + ∑i+j=n Pi(X )Pj(X )
I n : size
I X : number of available variables
I Vn(X ) : the number of terms which are variables

Until now
unit size: V1(X ) = X and Vn(X ) = 0 if n > 1

Is it realistic?

Well...

I 1 bit to represent many possible choices
I a super-exponential number of terms of a given “size”
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General setting
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Counting variables

Non-unit cost of variables
A concrete notion of size

I use De Bruijn indexes
I take into account the cost of such indexes

Possible choices

I unary De Bruijn index:

Vn(X ) =

{
1 if n ≤ X
0 else

I binary De Bruijn index:

Vn(X ) = #
{

i : i ≤ X and |bin(i)| = n
}
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Counting variables

Small closed terms in the 3 models

size constant unary binary
2 λx .x λ.1 λ.0

3 λx1, x2.xi (×2) λ2.1 λ2.0
λ2.1

4 λx1, x2, x3.xi (×3)
λx .x x

λ3.1
λ2.11
λ.1 1

λ3.0
λ3.1
λ.0 0

5

λx1, x2, x3, x4.xi (×4)
λx1, x2.xi xj (×4)

λx1.x1 (λx2.xi ) (×4)
(λx .x) (λx .x)

λ4.1
λ3.11
λ2.1 1

λ.(1 λ.1)
λ.(λ.1 1)

(λ.1) (λ.1)

λ4.(0/1) (×2)
λ3.11

λ2.(0/1) (0/1) (×4)
λ.0 (λ.(0/1)) (×4)
(λ.0) (λ.0)
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Counting variables

Differences between the 3 models
For non-unit costs

I the growth rate is only exponential
I Pn(X ) is not a polynomial in X
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Proportion of terms in normal form
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Counting variables

Proportion of terms starting with a lambda
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Counting variables

Proportion of terms starting with
⌈√√

n
⌉

lambdas
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Counting variables

Proportion of terms not containing identity
Remark: id has the same size for the 3 models
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Counting variables

Proportion of terms not containing Ω
Remark: Ω has the same size for the 3 models



Counting λ-terms

In the Turing world...

Outline of the talk

Introduction, Problem Statement and First Results

Polynomials

Bounding

Counting specific terms

Counting variables

In the Turing world...

Research directions



Counting λ-terms

In the Turing world...

Analogous questions in the Turing world

I syntactical objects: fully specified Turing machines

δ : {0, 1} ×Qn → {0, 1} × (Qn ∪ {halt})× {L, R}

I studied property: the halting problem (H)

Simple facts

1. there are (4n + 4)2n machines with n states
2. d(H) < 1− 1/e2 (if it exists)

I determining d(H) in the general setting is still open, but...
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In the Turing world...

Result of another kind...

Theorem (J.D. Hamkins, A. Miasnikov, 2005)
There exists a set B of machines such that:

1. B is decidable (in polynomial time);
2. B has asymptotic density 1;
3. the halting problem is decidable (in polynomial time) on B.

model sensitive result!

I it uses semi-infinite tape Turing-machines!
I if falling-off the tape is not halting then d(H) = 0

Proof idea
Uses a trick to convert the first steps of a random Turing
machine into a random walk of the head.
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In the Turing world...

Yet another kind of result...

Definition
A set is strongly generic if its complement converges
exponentially fast to 0 in density.

Theorem (A. Rybalov, 2005)
The halting problem is strongly undecidable, i.e. it is
undecidable on any strongly generic set of Turing machines.

Proof idea
The set of machines computing a given (computable) function
is not strongly negligible (one can add garbage code at some
places without affecting the computation).
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Research directions

I “combinatorial” proof that for any fixed tree T0, a large
random tree always contains T0 (Kolmogorov
incompressibility method?)

I typical tree shape of random λ-terms (e.g. relation
between height and size)

I other experiments: random generation of big λ-terms to
have an idea of their shape
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Research directions

I possible properties to look at:
I about shape: normality, beginning by a λ,
I depending on the reduction rule: SN, WN,
I other: typability

I finding sets of terms with density 1 for which SN or WN
becomes decidable

I consider other distributions than the uniform one (e.g.,
similar to the BST model)

I any non-trivial proved result about random λ-terms with
any representation of variables is welcome!
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